Intaros – general assembly 2021

Task 6.2 Improved ecosystem understanding and management

Lead: Institute of Marine Research (IMR), Gro I. van der Meeren

Contributors: Aarhus University (AU) Greenland Institute of Natural Resources (GINR) Technical University of Denmark (DTU)

Demonstrate how an iAOS can:

- contribute towards validation
- allow for use of ecological models like NORWECOM and Atlantis
- **build upon** the existing environmental and fisheries reporting and management systems for the case areas to demonstrate how data

from iAOS may allow for implementing similar procedures in other

parts of the Arctic (see alsoTask 6.8).

IMR data available on OPeNDAP

CTD data

	95	96	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
G.O. Sars																										
Johan Hjort																										
Helmer Hansen																										
Kristine Bonnevie																										
Håkon Mosby																										
Jan Mayen																										
Michael Sars																										
Sarsen																										

Mooring data from Barents Sea Opening

BSO1	71,5 N	20,0 E	1997 - 2017
BSO2	72,0 N	20,0 E	1997 - 2017
BSO2B	72,25 N	20,0 E	1997 - 2017
BSO3	72,5 N	20,0 E	1997 - 2017
BSO3B	72,75 N	20,0 E	1997 - 2017
BSO4	73,0 N	20,0 E	1997 - 2017
BSO5	73,5 N	20,0 E	1997 - 2017

Data published in 2020 at NMDC and registered in the INTAROS catalogue

- Distribution simulation:
 - Herring 2010 2069
 - Mackerel 2010 2069
 - Blue whiting 2010 2069
- Overfishing simulation:
 - Herring 2015 2025
 - Mackerel 2015 2025
 - Blue whiting 2015 2025

Results by January 2021

Deliverables 6.3 (M42)

Integrated Arctic Observation System

Research and Innovation Action under EC Horizon2020 Grant Agreement no. 727890

Project coordinator: Nansen Environmental and Remote Sensing Center, Norway

Deliverable 6.3

Extension of ecosystem management systems: Use existing environmental and fisheries reporting and management systems of the Barents Sea and off Greenland to demonstrate how data from an iAOS may allow for implementing similar procedures in other parts of the Arctic

Start date of project:	01 December 2016	Duration:	60 months
Due date of deliverable	25 May 2020	Actual submission date:	20 May 2020
Lead beneficiary for pre	paring the deliverable:	IMR	
Person-months used to	produce deliverable:	15 pm	

Gro I. van der Meeren (GlvdM) (IMR) Lead Task 6.2; Coordinator report, 1. author rie Maar (MM) (AU) Task 6.8 Coordinator AU team, 2. author Authors: Cecilie Hansen (IMR), Eva Friis Møller (AU), Janus Larsen (AU), Harald ng (IMR), Morten Skogen (IMR) (in alphabetic order) page 1

Date: 25 May 2020

Papers

Hansen, C., van der Meeren, G., Loeng, H. and Skogen, M.D., resubmitted, Assessing the state of the Barents Sea using indicators. How, when and where? ICES journal of marine science jan. 2021

Larsen J., Maar M., Mohn C., Pastor A., 2020. A versatile marine modelling tool applied to arctic, temperate and tropical waters. PLOS ONE 15(4): e0231193. https://doi.org/10.1371/journal.pone.0231193.

Note

Hansen, C., van der Meeren, G., Loeng, H. and Skogen, M.D., INTAROS: INTEGRATED ARCTIC OBSERVATION SYSTEM (INTAROS) Barentshavet analysert med økosystem-modeller basert på observerte indikatorer; benyttes de beste indikatorene og er omfanget av datainnhenting optimalt?

Note (in Norwegian) to be discussed by Norwegian stakeholders 2021 at seminar January 2021. Bergen/Austevoll 3. november 2020

Objective & models

How well do the indicators from the Barents Sea management respond to changes in climate and fisheries, does it matter when and where the observations are sampled, and can they be used in management?

A selection of the indicators in the management plan was evaluated by using two end-to-end ecosystem models; NORWECOM.e2e and NoBa Atlantis

Figure: NORWECOM.e2e model domain in dots, NoBain solid lines, and Indicator areas from the management plans marked in colors.

Hansen, C., van der Meeren, G., Loeng, H. and Skogen, M.D., resubmitted, ICES journal of marine science

Indicators and model system

Hansen, C., van der Meeren, G.I., Loeng, H. and Skogen, M.D., resubmitted, ICES journal of marine science

Time series of abundance historic and projected (NoBa Atlantis)

Hansen, C., van der Meeren, G.I., Loeng, H. and Skogen, M.D., resubmitted, ICES journal of marine science

Historic and projected status for selected complex indicators based on various fisheries impact (NoBa Atlantis)

Functional relationships:

- C- Catches (FuncRelC; TLPC; TLBPC; TLBC)
- B- Biomass (FuncREIB; TLBPB; TLBB; TLPB)

THUR RELENCE

There were few differences between the scenarios including harvest on additional ecosystem components. Those including the commercial components only

Sensitivity in net primary production indicator in time and space (NORWECOM.E2E)

 \bigcirc

	Best re	Less (not least) good results						
	Polygon	Month	Corr	Polygon	Month	Corr		
Atlantic	33	April	0.54	30	April	0.27		
Arctic	47	July	0.69	47	May	0.01		
Atlantic edge	19	July	0.56	12	May	0.02		
Arctic edge	20	May	0.66	20	June	0.30		
			\smile					

		Polygon1	Polygon	2 Polygon3	Μ	<u>onth1</u>	Month2	Month3	<u>Corr</u>
		33			Ap	oril	August		0.55
Atlan	tic	23	32		Ap	oril			0.59
		5	33		Jul	ly	April		0.65
	~	33			Ap	oril	June	July	0.61
2		23	32	33	Ap	oril			0.61
S IN	TAROS	29	30	33	Au	igust	July	June	0.71

Hansen, C., van der Meeren, G.I., Loeng, H. and Skogen, M.D., resubmitted, ICES journal of marine science

Conclusions

- The abiotic indicators (e.g. temperature, fresh water height) serves more as a tool to report on climate trends rather than ecosystem status
- The indicators are extremely dependent upon location and time of observation
- Complex indicators (trophic level, functional relationship) gives a good overview of overall changes in the system, but can conceal changes in the individual populations
- The lack of socioeconomic indicators prevents a holistic view of the ecosystem
- To be effectively used for management purposes, the indicators needs to be more closely linked to threshold values and management actions

Hansen, C., van der Meeren, G., Loeng, H. and Skogen, M.D., resubmitted, ICES journal of marine science

Next steps and deliverabels

Stakeholder communication and collaboration

- Working group meeting with national management bodies in Norway (20. January 2021)
 - Aim: Discuss the use, usefulness and types of indicators needed and wanted by legisators and managers
- Continued collaboration and share of information with subtask partners for preparing and deliver on stakeholdes
- Milestones IMR Subtask 6.2/6.8:
 - Report with input, advices and reccomendations from this workshop as D. 6.10 (M54)
 - Publishing new tests of inputs and advices, for robustnes and value of the suggestions (Spring/summer 2021)
 - Final results from workshop and papers, to be included in D. 6.13 (M58)
 - Dissemination WP7 products published by end of project

Over to subtask 6.8, Greenland and Marie Maar (AU)

