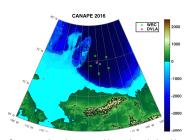


Integrated Arctic Observation System Development

Activities in 2017

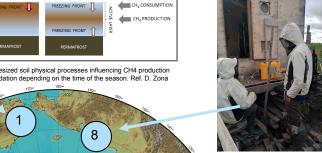
A project funded by EC H2020-BG-09 for 2016-2021 Contract no.727890

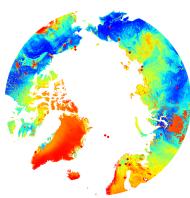
Coordinator: S. Sandven, deputy coordinator: H. Sagen, Nansen Environmental and Remote Sensing Center, Norway


WP leaders and co-leaders: E. Buch, EuroGOOS, R. Pirazzini, FMI, D. Gustavson, SMHI, A. Beszczynska-Möller, IOPAN, P. Voss, GEUS, F. Danielsen, NORDECO, L. Iversen, NERSC, P. Gonçalves, Terradue, T. Hamre, NERSC, G. Ottersen, IMR, M. Sejr, AU, D. Zona, USFD, N. Dwyer, Eurocean

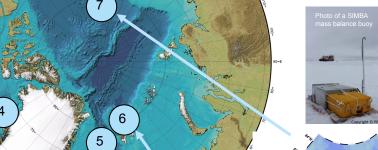
Overall objective

INTAROS is building an efficient integrated Arctic Observing System (iAOS) by extending, improving and unifying existing systems in different regions of **During 2017 INTAROS has extended observations across** land and sea areas of the Arctic


Multidisciplinary


observing systems covering atmosphere, ocean, sea ice, marine ecosystems, glaciology, snow, hydrology and other land surface processes, natural hazards and community-based systems

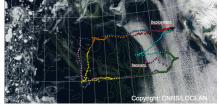
USCGC Healy, led by P. Worcester, Scripps



Station network representativeness based on 29 'prime sites' (red dots) around the Arctic. Blue is good match, red is no match. Ref M. Goeckede, MPI-BGC

CNRS Takuvik has performed soil carbon measurements at Bylot Island (73 N, 80 W), drilling a few m deep in the permafrost. The institute has also measured carbon in soil at Umiujaq (Nunavik), and performed drone-borne lidar surveys in preparation for a winter campaign to measure snow depth as a function of vegetation cover. (Ref. R. Domine, Takuvik).

Ecological monitoring using passive acoustics deployed on the seafloor in Young Sound, Greenland. (Ref. CNRS-IUEM)


A weather mast deployed on an ice floe in the Chukchi Sea during the CHINARE 2017 expedition with RV Xuelong (Photo: Q. Yang, NMEFC)

Picture of earth slide in Svalbard taken during a student field trip from in August 2017 (Photo L. Iversen).

Glider deployment in the Fram Strait (Ref. IOPAN)

CNRS-LOCEAN and IOPAN deployed a Slocum glider in Fram Strait from R/V Oceania in July. The glider mission laseted for two months and provided vertical sections of temperature and salinity across the Fram Strait

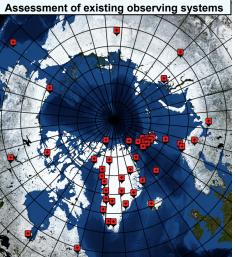
The IOPAN team onboard RV Lance recovered one and deployed four INTAROS moorings in the area north of Svalbard during the cruise in September. Two IOPAN moorings and two CNRS-LOCEAN moorings were deployed. Ref. A. Beszczynska-Möller.

Session form the workshop. (Photo: Finn Danielsen)

Good practices of CBM programs:

- Be collaborative, co-producing knowledge and projects Gather information that is relevant to communities, and adaptation needs
- Empower Indigenous peoples to address local decision Empower integrations peoples to address local decision making needs
 Utilize traditional knowledge to fill information gaps, especially baseline conditions
 Avoid duplication by building on what is already in place Build bridges between two worlds, Native and Science

- Build proges between two words, returned and occurred that data sharing agreements in place, which are co-created by all parties involved and clear to all participants. Share data with participanting communities in locally accepted forms of communication (plain language reports,
- accepted forms of communication (plain language reputs stories, newsletters)


 Contribute to communities through training, employment, honorarium; by providing information needed to inform decision making needs

 Be inclusive, including the youth, Elders, and women

During the Arctic Week in Fairbanks, from May 8 – 12, 2017 INTAROS organised a workshop in collaboration with University of Alaska Fairbanks (UAF), the Yukon River Inter-Tribal Watershed Council (YRITWC) and the Exchange for Local Observations and Knowledge of the Arctic (ELOKA). The workshop offered an opportunity for practioners

nop offered an opportunity for practioners immunity-based monitoring (CBM) and ring programs to come together to nge experiences and perspectives.

Preliminary map of in situ observing systems with in situ data collection, which have been surveyed. Each icon represent a station or an observing platform.

List of surveyed observing systems

ATMOSPHERE

WMO Integrated Global Observing System (WIGOS)
ICCOS
PROMICE automatic weather station network
Tower network for atmospheric trace gas mixing-ratio monitoring_NOAA
Greenland Ecosystem Monitoring program
Regional-GAW

OCEAN AND SEA ICE

LAND INCLUDING TERRESTRIAL CRYOSPHERE

INCLUDING TERRESTRIAL CRYOSPHERE
Greenland Ice Sheet Monitoring Network (GLISN)
Greenland GPS Network
Ameriflux, Fluxnet
Airborne observations of surface-atmosphere flux
GNET - GPS networks
Federation of Icelandic River Owners
Fávilis – Sámi Fishery Research Network
Spring bird migration phenology

Consortium members

Norway: NERSC, UIB, IMR, UNIS, NIVA, NORUT, DNV-GL Greenland/Denmark: GEUS, DTU, GINR, NORDECO, Aarhus University
Sweden: SMHI, Stockholm University

Finland; FMI, University of Helsinki Germany: AWI, Univ Hamburg, Univ Bremen, MPG-BGC, GFZ UK: University of Sheffield, University of Exeter

Poland: IOPAN, IGPAN, Univ Slaski France: CNRS, Ifremer, ARMINES Spain: Polyt, Univ Madrid, Barcelona CS Portugal: Eurocean

Belgium: EuroGOOS AISBL Ireland: Maynooth University Italy: Terradue, JRC Russia: RIHMI-WDC, NIERSC

USA: UAF, SIO, WHOI, JPL Canada: U Laval, ONC China: RADI, NMEFC, PRIC Japan: ROIS/NIPR South Korea: KOPRI

Coordination

Nansen Environmental and Remote sensing Center Thormøhlensgate 47 N-5006 Bergen, Norway http://www.nersc.no

Project website: www.intaros.eu