

INTAROS exploitation of exiting observing systems

Roberta Pirazzini¹, Michael Tjernström², Peter Thorne³, Andreas Ahlstrøm⁴, Francisco Navarro⁵, Carsten Ludwigsen⁶, David Gustafsson⁷, Torill Hamre⁸, Hanne Sagen⁸, Stein Sandven⁸

- (1) Finnish Meteorological Institute, Helsinki, Finland
- (2) Department of Meteorology, Stockholm University, Stockholm, Sweden
- (3) National University of Ireland Maynooth, Maynooth, Ireland
- (4) Geological Survey of Denmark and Greenland, Copenhagen, Denmark
- (5) Politechnic University of Madrid, Madrid, Spain
- (6) Technical University of Denmark, Kongens Lyngby, Denmark
- (7) Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
- (8) Nansen Environmental and Remote Sensing Center, Bergen, Norway

- to perform a gap analysis and maturity assessment of the existing Arctic observing systems and
- 2. to enhance the quality and accessibility of existing Arctic data

1. and 2. are pre-requisites for the development and optimization of an integrated Arctic Observing system

(Modest) model sensitivity studies

ATMOSPHERE: ECMWF model sensitivity to radiosounding observations **OCEAN** MIT GCM sensitivity to SSH and salinity **LAND** inverted modeling of 'field of view' for GHG tower network.

Assessed observing systems

INTAROS

Legend

- All spheres
- П trial cryosphere
- \mathbf{x} terrestrial cryosphere
- sphere
- Ocean
- Δ Atmosphere
- sphere (regions)
 - Ocean (regions)

Atmosphere: overview of the surveyed observing systems

Ocean & Sea Ice: overview of the surveyed observing systems

Land and terrestrial cryosphere: overview of the surveyed observing systems

Identified gaps in the Marine environment

Atmosphere: Observational gaps are in almost everything, especially in the vertical structure of atmosphere and of clouds; satellite retrievals, especially of clouds and profiling, are inadequate

Ocean & sea ice: Main gaps are in the vertical structure under ice, biogeochemical and biological observations, long-term moorings, sea-ice thickness and snow on the ice

Identified gaps in the Terrestrial environment

Atmosphere: There is need of increased data quality in some parts of the Arctic; long-term process (e.g. "super site") observations of clouds and aerosols, especially in Russian Arctic where trace gas and trace-gas fluxes also have gaps

Land & cryosphere: Main gaps are in: scarcity of number/type of snow, glacier & ice sheet mass balance observations; availability of near-real-time observations; lack of characterization of satellite products **MATURITY SCORES**: Assessed categories and subcategories and System Maturity Matrix structure for in situ observing systems, modified via category selection from that from GAIA-CLIM.

Data management	Sustainability	Uncertainty	Metadata	Documentation
Storage	Scientific and expert support	Traceability	Standards	Description of methodology
Access	Funding	Comparability	Collection level	Validation report
User feedback	Site represent- tativeness	Standards	File level	User guidance
Updates		Validation		
Version control		Uncertainty quantification		
Data preservation		Routine quality management		

INTAROS Gap analysis and maturity assessment

	м	ETADA	TA	DOCU	MENT	ATION	UNCERTAINTIES						DATA MANAGEMENT			ENT	SUST					
Name of Observing system	Standards	Collection Level	File Level	Description	Validation Report	Series User Guidance	Traceability	Comparability	Standards	Validation	Quantification	Quality Management	Storage	Access	User feedback	Updated to record	Version control	Preservation	Expert support	Funding support	Site representativeness	MATURITY CLASS
*A-TWAIN	1	2	4	1	2	2	2	2	na	na	2	3	2	6	1	2	2	4	5	3	na	CMP
*A-TWAIN PL	3	3	3	3	3	2	3	2	na	na	3	4	3	5	2	2	2	2	4	3	na	CMP-BSL
*AREX	4	3	3	3	2	2	4	3	na	na	4	2	6	5	2	3	2	3	4	4	na	CMP
ArgoPoland	4	3	4	2	3	2	5	4	na	na	2	4	6	6	1	3	4	4	4	3	na	BSL
EGO gliders	5	4	5	2	2	2	2	4	na	na	2	4	6	5	3	3	3	4	3	4	na	CMP-BSL
*FRAM	5	2	3	1	1	1	6	6	2	1	2	1	6	5	2	4	4	4	6	5	na	CMP-BSL
IMR BSOMA	1	2	3	2	2	2	2	1	2	2	2	3	4	3	2	2	1	4	5	4	na	CMP
IMR FHS	3	3	3	2	2	3	2	2	na	na	2	2	4	5	2	4	1	4	5	5	na	CMP-BSL
IMR FHScoast	3	2	3	4	1	2	2	2	na	na	1	1	4	4	2	na	1	4	4	5	na	CMP
IMR SI	na	2	2	3	2	4	2	2	na	na	2	2	2	3	2	3	1	3	4	3	na	СМР
GLOSS-Greenland	3	1	na	1	2	2	2	2	1	1	1	5	4	3	2	2	2	3	3	3	3	CMP
R/V Håkon Mosby	4	3	4	na	na	na	na	na	na	na	na	na	3	4	2	3	2	3	5	5	na	na
*Fram MAS	1	2	3	1	1	1	1	1	2	1	1	1	2	2	1	2	2	3	3	2	na	CMP
NorArgo	1	2	4	3	2	3	2	2	na	na	2	3	6	6	5	4	na	5	6	2	na	BSI
AC-AHC2	na	na	na	2	2	1	2	2	2	1	2	1	2	2	2	2	2	3	1	1	1	CMP
*RNA	3	3	4	1	2	2	5	2			2	5	6	5	1	6	2	5	2	5		CMP-BSI
*GAW/	4	2	2	3	2	2	2	2	na	na	2	1	6	5	2	2	2	5	5	5	4	CMP
*Regional GAW	4	2	2	2	2	2	2	2	na	na	2	1	6	5	2	2	2	5	5	5	4	CMP
	4	5	5	1	2	2	5	5	na	na	5	5	6	5	5	5	2	5	6	6	4	BSI
CPLIAN	-	5	5	6	5	6	6	5	6	6	6	5	6	6	5	5	5	5	5	6	-	DEE
GOS mot	1	5	1	1	2	2	2	2	2	1	1	1	6	6	5	1	1	5	2	5	1	
*Atmospheria ship based compaigns	1	2	4	1	1	1	1	1	2 1	1	1	4	2	2	2	4	4	2	3	1	1	CIVIP-BSL
Autospheric ship-based campaigns	1	2	2	2	2	2	2	2	2	2	2	2	2	2	1	2	2	4	1	2	2	
*World Glasier Menitoring Service	-	3	3	3	5	3	2	2	3	2	2	2	4	3	-	5	5	4	1	2	3	CIVIF-D3L
Fluctuations of Classics Database	-	2	2	2	2	2			2	2	2	2	c	c	2	2	-	-	-	6	2	BSL
Clasic Thickness Database	2	2	э э		2	2	na	na	2	э 2	2	2	6	6	э 2	э 2	5	5	5	6	2	DCI
Glacier Thickness Database	4	5	3	5	2	5	na	na E	3	3	3	3	C C	e e	3	3	2	5	5	2	5	BSL
*Nerversion National Calencia Network	C	6	0		0	о г	5	5	0	5	5	0 F		C C	2	3	3	0 F		5	- 0 -	DOL-REF
		-	5		4	5		c o	na c	na c	C			-	2	-	-	5	 	-	5	DSL-REF
GNET - GPS Helworks	2	2	2	2	2	2	0	0	2	2	2	2	5	5	5	2	5	5	5	5	2	DCI
	4	2	5	3	2	2	IId	nd	5	5	2	5		-	1	5	3	2	5	- 0	5	DOL CMAD DCL
*Creenland Econyotem Monitoring program	1	2	1	1	1	1	4	1	11d	110	1	4	2	2	2	4	4	4	5	6	5	CIVIP-BSL
MD Perente See Winter Survey	1	2	2		1	1	1	1	1	1	1	1	2	-+	1	2	1	2	1	G	110	CMP
*IMP PINPO Ecosystem Survey	1	2	2		1	1	2	2	1	1	1	1	2	2	2	2	1	3	1	6	110	CMD
*NIV/A Perente See Ferry/Per	2	2	2	2	2	1	1	2	1	1	2	2	1	2	2	2	2	-+	6	4	110	
NivA balenis Sea Fellybox	3	2	э э	2	2	4	2	2	110	110	2	3	2	2	2	2	2	5	2	4	11d	CMD
*Sodonkulä station	4	2	э э	2	2	2	2	2	1	1	2	1	2	2	2	2	2	4	5	6	5	CIVIF
*Airborno obsorvations of surface	1	3	3	1	2	2	2	2	IId	IId	2	1	2	5	2	4	2	3	0	0	4	CIVIP
All Doffie Observations of Sufface-	1	2	4	1	1	1	2	2	1	2	2	2	2	2	2		2	4	4	4		CMD
AUTIOS PHETE TILXES	1	2	4	1	1	1	2	3	T	2	2	2	2	2	2	na	2	4	4	4	5	CIVIP
		-				-		4		-	-	-	_		2			-	_	-		CHAR DC:
Network	1	3	5	4	1	3	1	1	1	2	2	3	5	6	2	6	5	5	6	6	4	CMP-BSL
Hornsund Station	5	3	3	2	1	2	1	1	2	1	1	1	4	3	2	2	2	4	4	5	3	CMP
Tower network for atmospheric trace gas mixing-ratio monitoring	4	4	3	3	3	3	6	6	6	6	6	5	2	2	2	3	4	4	3	3	3	BSL

Synthesis of Maturity: terrestrial environment

atmosphere, land and terrestrial cryosphere and multidisciplinary (Shades of red correspond to the maturity scores)

Observing systems	Sustainability	Data management	Uncertainty handling	Metadata handling	Documentation
GRUAN, ACTRIS, ICOS, GNET-GPS Network, GLISN, NNSN, Arctic-HYCOS	High	High	High or medium-high	High	High
Global/regional GAW, PROMICE, GlaThiDa, WGMS-FoG, RGI	High	High or medium- high	Low	Medium-high	Medium
Radiosoundings network, GOS Surface synoptic measurements, Sodankylä supersite	High	Medium-high	Medium-high	Medium	Low
Radiosounding network, GEM	High	Medium-high	Low	Low	Low
Hornsund supersite	Medium	Medium	Low	Medium	Low
GC-Net	Medium	Medium	No information	No information	No information
Tower network for atmospheric trace gas mixing-ratio monitoring	Medium	Low	High	Medium	Medium
luxnet, PEEX, Airborne observations of urface-atmosphere fluxes	ow-Medium	Low-Medium	Low	Medium	Low

Ω INTAROS Gap analysis and maturity assessment

Synthesis of Maturity: marine environment

ocean and sea ice, atmosphere, and **multidisciplinary** (Shades of red correspond to the maturity scores)

Observing systems	Sustainability	Data management	Uncertainty handling	Metadata handling	Documentation	
FRAM	High	Medium	Low-medium	Medium-high	Low-medium	
IMR PINRO Ecosystem Survey & Barents Sea Winter Survey, Greenland Ecosystem Monitoring Programme	High	Low-medium	Low	Low	Low	
NorArgo	Medium	High	Low-Medium	Medium	Medium	
IOPAN Long-term Monitoring in Svalbard Fjords	Medium	High	Not assessed	Not assessed	Not assessed	
Argo Poland	Medium	Medium-High	Medium-high	Medium	Low-Medium	
A-TWAIN / A-TWAIN Poland	Medium	Medium-High	Low	Low-medium	Low	
NIVA Barents Sea FerryBox	Medium	Low-medium	Medium-high	Medium	High	
IOC Tide Gauges in Greenland, AREX	Medium	Low-Medium	Low	Low	Low	
International Arctic Buoy Programme	Medium	Low-Medium	Not assessed	Not assessed	Not assessed	
Atmospheric field experiment (ASCOS, ACSE, N-ICE), Polarstern soundings	Low	Low-medium	Low-medium	Low-medium	Medium	
Fram Strait Multipurpose Acoustic System	Low	Low	Low	Low-Medium	Low	

Enhanced data quality and accessibility

Improved data products

INTAROS

- Compilation of data products from distributed databases
- •Harmonization of sparse data following best practices and protocols

Now available trough:

- open access databases
- INTAROS Data Catalogue <u>https://catalog-</u> intaros.nersc.no/

INTAROS Data Catalogue statistics

132 datasets 37 organizations 0 themes

Community Based Monitoring datasets and programs

INTAROS is working closely with several local communities and citizen science programs across the Arctic. In one of these programs, INTAROS partner GEUS is collaborating with the municipality in Qeqertalik, Greenland, to collect information on seismic activity. A pilot program with seismic stations operated by local community members have been established, and the data collected feeds into the Raspberry Shake Community and the GEUS' earthquake bulletin A data portal shown in image below gives access to the seismic data from this community. This and other CBM datasets can be found here.

Welcome to the INTAROS data catalogue

INTAROS collects data within key regions of the Arctic, and provides access to these datasets and other datasets of relevance to our targeted stakeholders. This Data Catalog contains descriptions of colleced, derived and estimated datasets that are generated within the project.

 High sustainability is a proxy for high scores across the board and such systems result from national, regional or global infrastructures often not specific to the Arctic ⇒

Integrate Arctic observing in existing national/regional/global program rather than inventing new Arctic specific systems

 Scientific campaigns/expeditions provide the highest quality observations, but are deficient in almost all other aspects, especially on sustainability and data management ⇒

Revision of funding mechanisms:

- increase coordination/shared funding between operational and scientific driven observations
- involvement of private sector

- —Arctic Ocean: A lack of in-situ observing capacity across all disciplines. Almost nothing in the atmosphere; subsurface installations robust but few, and they deliver data in delayed mode ⇒
 - Paradigm shift in system design where field experiments correspond to the reference system, satellites to baseline and reanalysis replaces the comprehensive level
- -Arctic land: Quality is a larger problem than coverage \Rightarrow <u>Upgrade and complement existing stations, rather than expanding new networks;</u> <u>deploy new technology at existing stations</u>
- **—Satellites**: provides the only data with sufficient spatial and temporal cover, but quality is sometimes lacking \Rightarrow
 - Invest in in situ Cal/Val multidisciplinary supersites and field campaigns to improve satellite retrievals, models and data assimilation

Multidisciplinary supersites/experiments!

