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EXECUTIVE SUMMARY 

This report describes the final results of the work performed in Task 6.1, which has the main 

goal of improving the skill of climate predictions, investigating the benefits related to the 

exploitation of INTAROS data. Such benefits demonstrate a clear potential for users of Arctic 

data and stakeholders of climate prediction. 
 

A key ingredient to skillful seasonal-to-decadal climate prediction is the use of high-quality 

observational data, that cover a sufficiently long period, typically at least a few decades to test 

robustly their impact. This emphasizes the need - from a user perspective - to sustain and 

continue the production of the various iAOS products. 
 

The works in the task made use of three different datasets produced in INTAROS, namely 

CERSAT sea-ice concentrations, SMOS sea-thickness, and Arctic-HYCOS river discharges. 

 
The results found in Task 6.1 are: 

 
1. CERSAT sea-ice concentrations were successfully used to assess the skill of SMHI’s 

quasi-operational decadal climate predictions with EC-Earth3 regarding September 

Northern Hemisphere sea-ice area for a lead time of 11 months (based on the period 

1992-2020; correlation of 0.83) and the quality of new assimilation experiments 

providing potentially better initial conditions for climate predictions  (correlation 

of 0.9 including long-term trend; 0.58 for detrended data, i.e. interannual variability). 
2. CERSAT sea-ice concentrations were assimilated for BSC’s seasonal climate prediction 

system employing EC-Earth3. It is shown that the assimilation of sea-ice concentrations 

does not yield significant benefit for winter seasonal predictions (started on 1 November) 

but do have a remarkable positive impact on summer seasonal predictions (started on 1 

May) regarding the sea-ice edge but also remote North Atlantic SSTs. The latter is shown 

to be the result of a so-called atmospheric bridge translating the improved sea-ice 

representation via more realistic large-scale atmospheric variability into the SST-signal. 
3. Anomalies derived from sea-ice concentrations as well as SMOS and ENVISAT CCI 

sea-ice thickness estimates were assimilated in NorCPM, the seasonal-to-decadal climate 

prediction system developed at NERSC.  It is shown that the assimilation of sea-ice 

concentrations is particularly beneficial for predictions along the sea-ice edge while sea-

ice thickness is more important for the central Arctic. Hence, the assimilation of both is 

complementary and yields the best overall result. Here, the assimilation of SMOS data 

provides significantly better results compared to ENVISAT CCI. 
4. Arctic-HYCOS river discharge is part of the iAOS product, driving from WP2. It has 

been assimilated to produce a pan-Arctic hydrological analyses and subsequent forecasts 

with the Arctic-HYPE model. The functionality of this workflow is demonstrated via a 

use-case addressing the Republic of Sacha (Yakutia), in Far-East Russia, where a sub-

set of the Arctic-HYPE model is used for spring flood and river ice breakup forecasting 

in the major Yakutia rivers.  
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1. Introduction 
 

Climate predictions aim to estimate the future evolution of climate on sub-seasonal to decadal 

time scales. Climate predictability stems from two main sources, external forcing, and the state 

of the climate system (ocean, atmosphere, land, cryosphere) prior to the forecast initialization. 

Forecast systems (i.e., initialized climate models) are essential tools in climate prediction and 

their initialization, which synchronizes the model climate with the real climate, is necessary to 

exploit the real predictability of the climate system. Knowledge of the climate state at a given 

point in time is only possible through extensive observations of the different components of the 

climate system. Furthermore, to correctly evaluate past forecasts and improve the systems, 

continuous observations in time and space are necessary. A “big picture” view of most of the 

planet has only been available since satellites became operational in the late 1970s. 

Additionally, deployment of complementary in-situ observing systems has significantly 

increased in the past decades, filling important gaps, and as a result improving forecast quality. 

 

The different components of the climate systems interact and have characteristic persistence 

timescales which together result in predictability. The ocean is the most important component 

on long timescales (over months to decades), while the atmosphere is critical on short 

timescales (hours to a week). The land and the sea-ice state in polar regions contain information 

useful mostly on intermediate timescales (several weeks to over a season). Hence initializing 

the key variables of the sea-ice component in polar regions may be beneficial for seasonal and 

decadal predictions not only in polar regions. However, sea-ice initialization is not yet a 

standard practice in seasonal-to-decadal climate prediction. The partners involved in Task 6.1 

of INTAROS perform pioneering research in this context, but correct initialization relies on 

good observations. sea-ice concentration (SIC) and sea-ice thickness (SIT) are thought to be 

fundamental variables to initialize sea-ice in fully coupled models. Arctic-wide SIC 

observations have been available since the late 1970s, while SIT has become available more 

recently (early 2000s). 

 

Here we report the final findings on the impact of INTAROS Arctic products on seasonal and 

decadal hindcasts with two contemporary forecast systems, EC-Earth and NorCPM. These rely 

on the use of novel INTAROS observational datasets for the ocean, sea-ice and land (the 

specific sets employed are indicated in Sec. 2) either for initialization or evaluation, following 

the workplan established for Task 6.1. Sec. 3 shows value of using CERSAT sea-ice 

concentrations (1992-2020) as independent observational reference for evaluating climate 

model assimilation simulations and quasi-operational decadal predictions. Sec. 4 provides 

insights into seasonal climate predictions performed after assimilating the very same dataset. 

Sec. 5 explains the benefits for seasonal-to-decadal predictions after assimilating C2SMOS 

(SMOS extended by the Cryosat data set, Wingham et al., 2006) sea-ice thickness information 

(2010-2020). In Sec. 6, we present findings of a hydrological use-case where the impact of 

assimilation of the Arctic-HYCOS hydrological observations (assessed and enhanced within 

WP2) on monitoring and forecasting of spring flood, river ice breakup and river freshwater flow 

to the Arctic Ocean is assessed. Sec. 7 summarizes our work, and some future perspectives are 

drawn in Sec 8. 
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2. INTAROS data used in this report 
 

Three different products from the INTAROS Data catalog https://catalog-intaros.nersc.no/ have 

been used for the analyses described in the report (Table 1). These cover different aspects of 

the ocean, sea-ice and hydrology of the Arctic region. CERSAT sea-ice concentrations were 

used for evaluating decadal climate predictions and new assimilation experiments (Sec. 3). 

Additionally, they were assimilated in another set of experiments to generate the initial 

conditions (ICs) for a seasonal prediction system with EC-Earth (Sect. 4). SMOS and C2SMOS 

sea-ice thickness has been employed to guide the initialization strategy of a decadal prediction 

system with EC-Earth and NorCPM (Sect. 3 and 5), and the third product (Arctic-HYCOS river 

discharges) were assimilated to produce pan-Arctic hydrological analyses and forecast with the 

Arctic-HYPE model (Sec. 6). Here we refer to C2SMOS as an extension of the SMOS data set 

with CRYOSAT data. 

 
Table 1. Summary of INTAROS data used in Task 6.1 

Product Variable Producer Period covered Spatial & 

temporal 

resolution 

SMOS sea-ice 

thickness 

ESA 2010-2020 ~25km; daily 

CERSAT sea-ice 

concentrations 

IFREMER 1992-2021 12.5 km; daily 

Arctic-HYCOS river discharge SMHI 1979-2020 daily values at 

428 river 

gauging station 

locations 

3. Benefit of new observational sea-ice information for 
evaluating and initializing climate model simulations for 
decadal climate predictions (SMHI contribution)  

Quasi-operational decadal predictions at SMHI 
 

In D6.1 we presented sensitivity studies assessing the benefit from initializing decadal 

predictions making use of actual information on sea-ice concentration and thickness. 

 

For that purpose, SMHI developed a method to directly account for sea-ice thickness as 

represented in ocean reanalysis products and set up a decadal climate prediction system 

employing this approach in close collaboration with colleagues at the Danish Meteorological 

Institute (DMI; a synergy with the ARCPATH-project, funded by the Joint Nordic Initiative on 

Arctic Research). The (atmosphere-ocean) general circulation model (AOGCM) in use is EC-

Earth (v3.3.1.1; Döscher et al., 2021), incorporating model components for the atmosphere (IFS 

c36r4), the ocean (NEMO3.6), and sea-ice (LIM3). A special feature of LIM3 is that it is based 

on multiple sea-ice categories (five in our case) for a single grid cell of the model. Our 

initialization method for sea-ice is based on the following procedure: (i) calculating the 

observed anomaly of local sea-ice volume (SIV; product of sea-ice thickness and concentration) 

https://catalog-intaros.nersc.no/
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for a given grid-cell; (ii) distributing these SIV-anomalies into sub-grid contributions of the five 

categories to the total grid-cell anomaly of sea-ice concentration and thickness. The distribution 

from (single-category) observed values to five-category contributions is done based on a local 

non-linear weight-likelihood function that was derived from a multi-centennial control 

simulation with EC-Earth3 (Tian et al. 2021). 

 

The “observational” data used for initializing ocean and sea-ice fields is taken from ECMWF’s 

ORAS5 ocean reanalysis. For all fields and systems an anomaly initialization approach is used, 

that means the observational anomalies (compared to the climatological period 1979-2014) are 

added to the model’s climatology. This approach usually prevents substantial initialization 

shocks and subsequent model drifts. Atmospheric fields have been initialized from ECMWF 

reanalysis data. 

 

Based on the results of the sensitivity studies presented in D6.1, a quasi-operational decadal 

prediction system was set up together with DMI, without the data sets listed in Table 1) 

consisting of 15 ensemble members in total and initialized annually on 1 November throughout 

the period 1960-2019. This decadal prediction system is participating in the international 

exchange of annual-to-decadal climate predictions led and coordinated by the UK MetOffice 

(https://hadleyserver.metoffice.gov.uk/wmolc/) and contributing to CMIP6-DCPP (Decadal 

Climate Prediction Project). 

 

Using CERSAT sea-ice concentrations to evaluate current decadal climate predictions  
 

A standard procedure in the context of (climate) prediction is the verification of the forecasts, 

i.e. an assessment of actual forecast skill. This is done by quantitatively comparing the results 

of forecasts performed in the past with observed values. The huge (computational) effort within 

DCPP to produce so-called hindcasts back to the 1960s (DCPP component A) enables us to do 

this. 

 

New high quality observational products are a requirement in this context, especially if they 

cover periods or regions that are sparsely sampled by other observations. The CERSAT dataset 

of sea-ice concentrations - part of the iAOS - is such an example, providing daily sea-ice 

concentrations in a high spatial resolution of 12.5km. 

This dataset was used to compute the total Northern Hemisphere (NH) sea-ice area. Fig. 1 

shows the interannual timeseries for the mean NH sea-ice area in September when the sea-ice 

area typically reaches its annual minimum in the Arctic. The CERSAT-timeseries is shown in 

black and compared with that of another observational dataset, the OSI-450 (gray) product OSI 

SAF Global Sea-Ice Concentration Climate Data Record, release 2). Both timeseries are very 

similar, however some differences are visible, too, especially in the years 2009-2011 and 2013. 

The different colored lines in Fig. 1 represent the September averages for the respective first 

forecast year (that means 11 months after initialization) of our decadal predictions. Please note 

that the individual values of the 15 ensemble members are reconstructed to time series for 

visualization in Fig. 1 even though they are results of distinct forecasts and hence independent 

of each other. The ensemble mean is plotted in bright green. A typical deterministic skill 

assessment in such a case is to calculate the (anomaly) correlation coefficient between the 

forecast ensemble mean and the observations. Making use of CERSAT sea-ice concentrations 

as observational reference yields a correlation coefficient of 0.83 for a prediction of September 

NH sea-ice area with this lead-time of 11 months. This may seem as a very positive result. 
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However, it becomes obvious from Fig. 1 that most of the signal over the period considered 

(1992-2020) is originating from the downward trend associated with global warming. Analysis 

of an ensemble of “un-initialized” CMIP6-historical simulations (see Fig. 2) reveals that in that 

case their ensemble mean features a correlation coefficient of 0.82 when compared with the 

CERSAT data. The benefit from initializing climate predictions with the actual climate state as 

done for the SMHI/DMI decadal prediction system hence is rather limited for the specific 

parameter September NH sea-ice area over a lead time of 11 months. 

 

An introduction of the SMHI/DMI decadal climate prediction system including first 

assessments of skill has been published (Tian et al. 2021). A more general and global skill 

assessment with particular focus on Arctic sea-ice is currently in preparation (Karami et al., in 

prep.). 

 
Figure 1. NH sea-ice area in September according to CERSAT dataset (black line) and OSI-450 (grey line) as well as 

the year 1 predictions (lead time 11 months) according to the 15 ensemble members of the SMHI/DMI decadal 

prediction system (colored lines) and their ensemble mean (green line) 

Ongoing work towards an improved climate prediction system  
 

In parallel to annually producing quasi-operational decadal predictions with the system briefly 

described above and in D6.1, SMHI works on developing a new improved climate prediction 

system, which is a continued development since the system for CMIP6-DCPP that is outlined 

above. The particularity of this system is the performance of coupled assimilation simulations, 

that means transient coupled AOGCM-simulations that are constantly updated with information 

about the real world’s climate evolution. The setup currently found to yield promising results, 

assimilates monthly mean sea-surface temperatures (starting in 1900 based on HadISST1) in 
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the ocean model component and 6-hourly instantaneous fields (linearly interpolated in between) 

of low-level atmospheric vorticity and divergence which are spectral representations of the 

horizontal wind components. The assimilation of these atmospheric fields is started in 1950 and 

based on ECMWF’s most recent reanalysis ERA5 (Hersbach et al., 2020) and its backward 

extension. All fields are assimilated as anomalies to retain the assimilation results close to the 

preferred model attractor. This is done to mitigate the risks of model drifts after starting the 

model from initialization fields derived from the assimilation run but switching into the free-

running prediction mode. 

 

It should be noted that EC-Earth3 in its current standard configuration does not feature any 

means of directly assimilating sea-ice information at the time of simulation. The project partner 

BSC developed and implemented such an option during the course of INTAROS (see Sec. 4 

and D6.1). For this reason, SMHI did not make use of CERSAT or any other sea-ice product in 

the assimilation. Based on the findings of the INTAROS-partners (see Sec. 4 & 5) SMHI may 

adapt its assimilation strategy in the future. 

 

However, we made use of the CERSAT sea-ice concentrations as an independent reference 

dataset for evaluating the results of the assimilation runs. Fig. 2 shows again the September 

mean NH sea-ice area as derived from the CERSAT-product (red line), but now compared to 

an ensemble of 10 CMIP6-historical simulations (grey) and an ensemble of 5 assimilation runs 

(blue). 

 

 
 

Figure 2. NH September sea-ice area according to CERSAT observational product (red line) as well as an ensemble of 

free running EC-Earth simulations (grey lines; following CMIP6-historical protocol and SSP2-4.5 after 2014) and a 

new set of assimilation experiments (blue lines) that assimilate anomalies of SST and low-level winds in the atmosphere 

While the assimilation runs feature a somehow smaller trend (-0.05*10⁶ km²/a) over the period 

1992-2020 when compared to the CERSAT-observations (-0.09*10⁶ km²/a) and the historical 
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ensemble (-0.11*10⁶ km²/a), the interannual variability of the assimilation ensemble mean 

matches the observations quite well, even though with substantially reduced magnitude. The 

correlation between the assimilation ensemble mean and CERSAT is 0.90 when considering 

the raw values (including the warming trends), compared with 0.82 for the historical ensemble. 

Focusing on the interannual variability by linearly detrending the data eliminates any skill of 

the historical ensemble (correlation of -0.16) while the assimilation ensemble still features a 

correlation of 0.58. This confirms our expectation that the assimilation of Sea Surface 

Temperature (SST)-anomalies (in ice-free regions only) and surface-near winds is sufficient to 

represent the NH sea-ice area reasonably well in our model. The impact on other variables and 

domains that are not directly subject to data assimilation is currently analyzed. It further needs 

to be shown if this approach is sufficient to generate better initial conditions used for potentially 

improved decadal climate predictions. 

4. Seasonal predictions making use of assimilating CERSAT sea-
ice concentrations (BSC-contribution) 

 

The smaller subset of seasonal hindcasts from BSC presented in D6.1 (Sec. 4) has been 

extended with additional members (30 in total) to also include the assimilation of SIC from 

OSISAFv2 (Lavergne et al., 2019, 10 members) and ORAS5 (Zuo et al., 2019, 10 members), 

in addition to the original SICs from CERSAT (Girard-Ardhuin et al., 2018, 10 members). This 

was done to both isolate the predictable signal common to all products (i.e., partly 

circumventing observational uncertainties) and to test the sensitivity of the forecast skill to the 

assimilated product (see Table 2 for more details). Additionally, a thorough assessment of skill 

in the Arctic and mid-latitude has been carried out, and now complements the initial analysis 

in D6.1, which was focused only on mean biases. In terms of seasonal forecast skill, SIC 

assimilation offers no improvement with respect to no SIC assimilation in the (November 1st 

initialized) winter/spring hindcasts, but has important benefits in the (May 1st initialized) 

summer/fall hindcasts. For this reason, only summer/fall hindcasts are discussed in the 

following.  
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Table 2: EC-Earth3.3 forecast system (BSC) description 

Hindcasts - 7 

months 

Model Atmosphere 
initial 
conditions   

Ocean and 
sea-ice initial 
conditions 

Restoring 
timescales 

NOSIC-ASSIM  

May 1st  and 

Nov 1st 

initializations  

1992-2019 

30 members 

EC-Earth3.3  
NEMO3.6 - 
LIM3 - IFS 
c36r4 - H-
Tessel  

ERA5 
(interpolated) 

NEMO3.6-LIM3 
reconstruction 
forced by ERA5 
surface fluxes, 
restoring T and 
S. 

Surface T and 
S: ~ 10 days. 
Subsurface T 
and S: ~ 3 days 
below mixed 
layer 
decreasing with 
depth.   

SIC-ASSIM 

May 1st and 

Nov 1st 

initializations  

1992-2019 

30 members 

EC-Earth3.3  
NEMO3.6 - 
LIM3 - IFS 
c36r4 - H-
Tessel  

ERA5 
(interpolated) 

NEMO3.6-LIM3 
reconstruction 
forced by ERA5 
surface fluxes, 
restoring T, S 
and SIC 
(CERSAT, 
ORAS5 and 
OSISAFv2, 10 
members 
each) 

Surface T and 
S: ~ 10 days. 
Subsurface T 
and S: ~ 3 days 
below mixed-
layer 
decreasing with 
depth.  
SIC: ~3 days  

 

Summer/fall hindcasts 
 

Regardless of the observational sea-ice product assimilated, the hindcasts with SIC assimilation 

(SIC-ASSIM) initialized every 1st of May in the period 1992-2019 show a consistent and 

significant improvement with respect to NOSIC-ASSIM, in forecasting the Arctic sea-ice edge 

in May, June, July and October (Fig 3a-c), showing the largest differences in May, but barely 

any difference in most of the late summer months (JAS). The small, but significant 

improvement in the fall is likely due to a well-known spring-fall reemergence mechanism of 

Arctic sea-ice (Bushuk et al., 2017). Interestingly, May, June, and JAS sea surface temperature 

(SST) show larger skill (in terms of anomaly correlation coefficients) in SIC-ASSIM than 

NOSIC-ASSIM in the central North Atlantic, far from the sea-ice edge (Fig 3d-f, purple box). 

Assimilation of each SIC product gives similar results in the North Atlantic region (not shown). 

This feature is robust regardless of the SIC product assimilated, which suggests that improved 

sea-ice initialization through assimilation is behind the improvements, the small ones seen in 

May and the enhanced improvements in the subsequent months (maximum correlation 

differences occur in June-September).    
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Figure 3: Mean 1992-2019 integrated Arctic sea-ice edge error (IIEE) as a function of forecast month in NOSIC-ASSIM 

(light red) and SIC-ASSIM (light blue) hindcasts for members (a) 1-10, (b) 11-20 and (c) 21-30. SIC-ASSIM members 

1-10, 11-20, and 21-30 are initialized with assimilation of CERSAT, ORAS5 and OSISAFv2 SICs, respectively.  

Difference in SST skill (anomaly correlation) between SIC-ASSIM and NOSIC-ASSIM in (d) May, (e) June and (f) JAS 

in the 30-member ensemble. The observational reference is NSIDC for SIC and HadISSTv1.1 for SST. Dots on lines (a-

c) and on the maps (d-f) indicate statistically significant differences (95% confidence) between SIC-ASSIM and NOSIC-

ASSIM. 

 

 

 
 

Figure 4: (a) GPH500 skill (anomaly correlation) in the North Atlantic of running bi-weekly mean in May of  NOSIC-

ASSIM (red), SIC-ASSIM (blue), and SIC-ASSIM without the sea-ice influence in Labrador-Baffin (yellow), GIN 

(purple) and Barents (green) hindcasts (See text). (b) The same for TAS. The observational reference is the mean of 

ERA5, JRA55 and NCEP reanalyzes. Dots on lines indicate statistically significant differences (95% confidence) 

between SIC-ASSIM and each one of the other lines. Dashed lines indicate the 95% confidence interval. 

 

To gain further insight into how the improved SICs lead to better skill in North Atlantic SSTs, 

a sub-monthly analysis of skill for geopotential height at 500mb (GPH500) and near surface air 

temperature (TAS) has been performed. It reveals improved skill in SIC-ASSIM with respect 

to NOSIC-ASSIM in the North Atlantic region already by forecast weeks 2 and 3 for GPH500 

(40-55N,35-10W) and TAS (35-55N,50-20W), respectively (Fig. 4 a, b). Note that the 
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difference in skill between SIC-ASSIM (blue line) and NOSIC-ASSIM (red line) hindcasts is 

exclusively caused by SIC assimilation, which allow us to conclude that better initialization of 

Arctic SICs positively influences North Atlantic SSTs through an atmospheric bridge that 

develops during the first two weeks of the forecast. To establish if a causal link exists between 

the improved SIC skill and that in North Atlantic GPH500 and TAS, we follow the method 

described in Acosta Navarro et al. (2020), which consists of linearly regressing out the 

variability of the leading variable before the skill for the driven variable is evaluated. By 

comparing the skill in the original SIC-ASSIM hindcasts with that of the synthetic hindcasts in 

which SIC variability is regressed out, we can thus determine whether and how much the 

leading variable contributes to the skill of the driven one. We have applied this approach for 

the sea-ice area at time of initialization (on May 1st) in three separate regions: the Labrador-

Baffin (yellow line), Greenland-Iceland-Norwegian (GIN) (purple line) and Barents (green 

line) Seas (Fig. 4 a, b). Removing the sea-ice signal from SIC-ASSIM reveals that both, GIN 

and Labrador-Baffin Seas reduce the GPH500 sub-monthly skill in the North Atlantic, which 

makes these synthetic forecasts closer to NOSIC-ASSIM. In the case of TAS, only Labrador-

Baffin Seas appear to have a significant impact on the forecasts. The skill degradation caused 

on one hand by the lack of SIC assimilation, and on the other by the statistical removal of sea-

ice signal from given regions, leads us to conclude that the state of sea-ice in the GIN, but 

especially Labrador-Baffin Seas affect the atmosphere in spring and matters when it comes to 

SST predictability throughout the summer and early fall.     

 

The higher skill of SIC-ASSIM than NOSIC-ASSIM for SSTs in the North Atlantic region, 

initially driven by better atmospheric circulation in May (Fig 4), persists well until September 

(Fig 5 a). This persistent improvement also leads to better GPH500 forecasts in JAS in the North 

Atlantic and Eurasian regions, a result that is confirmed by two independent analyses. Firstly, 

by comparing the JAS skill in SIC-ASSIM hindcasts with a synthetic hindcast without the signal 

explained by the North Atlantic SST index in JAS (Fig 5 b).  The skill in the synthetic hindcasts 

is computed using the residual of SIC-ASSIM after linearly regressing out the North Atlantic 

SST index (JAS), and this is done for each member separately (for more details see Acosta 

Navarro et al., 2020). This difference between original and synthetic SIC-ASSIM hindcasts 

indicates the regions where the JAS SST index improves (red/yellow) or degrades (blue) the 

skill. Secondly, the skill gain from the SIC assimilation (computed as the difference in anomaly 

correlations of SIC-ASSIM and NOSIC-ASSIM) shows a remarkable similarity (Fig. 5 b, c) in 

the North Atlantic and Eurasia, giving not only confidence in the results, but also supporting 

the importance of Arctic SIC assimilation for summer/fall forecasts.  

 

The mechanism connecting springtime SICs with JAS atmospheric circulation is a two-step 

mechanism: 1) a fast (sub-monthly timescales) atmospheric bridge develops in May, and 

connects the sea-ice in the North Atlantic sector of the Arctic with the SSTs in the central North 

Atlantic; and 2) the improved SSTs in the central North Atlantic persist from May until 

September, and via turbulent heat fluxes (not shown), improve the local and remote (Eurasia) 

atmospheric circulation during JAS, ASO and SON, improving as well the prediction skill of 

surface air temperature and precipitation (not shown).        
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Figure 5: (a) Monthly SST skill (anomaly correlation) in the North Atlantic in NOSIC-ASSIM (red) and SIC-ASSIM 

(blue). (b) Difference in GPH500 skill (anomaly correlation) in JAS between SIC-ASSIM and SIC-ASSIM without the 

influence of North Atlantic SSTs in JAS (see text). (c) Difference in GPH500 skill (anomaly correlation) in JAS between 

SIC-ASSIM and NOSIC-ASSIM. The observational reference is HadISSTv1.1 for SST and the mean of ERA5, JRA55 

and NCEP reanalyzes for GPH500. Dots on the line (a) and on the map (c) indicate statistically significant differences 

(95% confidence) between SIC-ASSIM and NOSIC-ASSIM. Dots in (b) indicate the same, but for the differences 

between SIC-ASSIM and SIC-ASSIM without the North Atlantic SST signal (JAS).   

5. Seasonal/decadal climate predictions making use of 
assimilating C2SMOS sea-ice thickness (NERSC contribution) 

 
In D6.1, we have used the Norwegian Climate prediction Model (NorCPM; developed at 

NERSC) and show that assimilation of ocean data could already achieve skillful prediction in 

some regions of the Arctic (e.g., in the Barents Sea, Wang et al. 2019, Dai et al. 2020, Bethke 

et al. 2021) during winter months, as ocean heat content can prevent the formation of sea ice.  

The assimilation method “advance ensemble Kalman Filter (EnKF)“ has been utilized in 

NorCPM. With assimilation of SIC in addition, skill near the Arctic Shelves emerges and skill 

extend towards the summertime (Kimmritz et al. 2019, K19 in the following) as the approach 

can skillfully initialize regional thickness anomalies. Hence, assimilation of ocean data (e.g., 

Bethke et al. 2021, see Fig. 6) and/or with SIC in addition (K19) can reduce drastically the bias 

of SIT when strongly coupled data assimilation is enabled (The system allows ocean data to 

correct the sea ice state and/ vice versa if SIC is assimilated). 
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Figure 6. November-March climatological bias of sea-ice thickness (in m) in a free historical ensemble, and in an 

assimilation experiment with ocean observation only. The observational reference combines C2SMOS (Ricker et al. 

2017), Cryostat2 and Envisat (Hendricks et al. 2018) over the period 2002--2018. 

 

However, the implementation in K19 yields a slight degradation for ocean heat content (OHC) 

at mid latitude. For D6.11 we aim to 1) rectify this limitation and 2) complement this system 

with assimilation of ice thickness. NorCPM uses anomaly assimilation meaning that the 

climatological bias of the observed quantity is left unchanged- an approach that limits 

assimilation shocks.  As such, we needed to construct the climatological reference of ice 

thickness with the revised system.  

 

The degradation in mid-latitude OHC was identified to be caused by an assimilation set up. For 

assimilation of ice concentration and sea surface temperature, the impact of assimilation was 

limited to the mixed layer in this particular set-up, while the impact of a full depth assimilation 

has been demonstrated in other versions of the system (Counillon et al. 2014, Counillon et al. 

2016). We have repeated the experiment of K19 but this time for the period 2002-2020 and 

with update of the full ocean state, to be able to construct the climatology of SIT.  

 

 

Figure 7. Correlation skill of 200-meter Ocean Heat Content computed against EN4 objective analysis for the period 

2002-2019 in the version of NorCPM with ocean observation only (left) and ocean & sea-ice concentration (right). 
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Figure 8. Detrended correlations of the initialized retrospective predictions with the sea-ice extent derived from the 

NOAA OISSTV2 retrievals. The y-axis is the lead months, and the x-axis is the target months.  The upper row panels 

shows results from the new system while the lower panels is as in K19 using HadiSST2 in 3 different regions. Dots 

denotes insignificant correlations using a significance level of 5%. 

 

The degradation of skill in OHC is no longer visible and the system with assimilation of ocean 

and sea-ice concentration performs better than the system with ocean data everywhere (see Fig. 

7). It is hard to directly compare the performance of sea-ice extent with that of K19 because the 

period of study is different (1980-2010 in K19 and 2002-2019 now), but the performance of the 

new system is very comparable (see Fig. 8). Still there is improved skill in some regions 

(Barents Sea, Kara Sea (not shown), Bering Seas) and in some other regions the skill seems to 

be now more prominent in summer than in winter (Greenland-Iceland-Norway aka GIN).  

 

We are currently investigating whether these changes are due to the improvement in the version 

of the system or due to a modulation of the prediction skill with climate change (e.g., Årthun et 

al. 2021). 
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Figure 9. Degree of Freedom of Signal of the ice thickness (from ENVISAT CCI 2.2), ice concentration, all ocean 

observations and the total by assimilation in November 2002. 

 

For assimilation of sea-ice thickness data we have used the ENVISAT CCI 2.2 (Hendricks et 

al. 2018) from November 2002 to March 2010 and the C2SMOS (Ricker et al. 2017) version 

V203 from November 2010 to 2020.  The data is only available for the wintertime, and we have 

discarded the transition months October and April. The accuracy of this data is lower during 

the transition month, and we have rejected it to be cautious - it has caused artefacts other 

systems (Xie et al. 2018).  Envisat and CS2SMOS SIT are not fully consistent with CS2SMOS 

providing more thin ice, especially in the marginal sea-ice zones. Assimilation of the anomalies 

of both products ensures a smooth transition. The climatology period for computing anomaly 

assimilation for ENVISAT is 2002-2012 and 2010-2019 for C2SMOS. For ENVISAT CCI 2.2 

we have used the provider observation error uncertainty in the monthly average. For C2SMOS 

the data is provided in daily average, and we have computed monthly average from the daily 

average and observation error as their harmonic mean. 

 

To quantify the relative influence of ice thickness data we use the degree of freedom of the 

signal (Sakov et al. 2012) that quantifies the number of degrees of freedom that is reduced by 

assimilation of each observation type. This number is limited by ensemble size (i.e., less than 

30), but one expects with the current system not to exceed 10. We show the cumulative impact 

of all ocean observations together (SST, temperature and salinity profiles), ice concentration 

(ICEC) and ice thickness (ICET). We notice that the influence of observations is much larger 

outside of the Arctic than inside and that exemplifies the need for more and novel observations 

there.  In the Arctic, ice concentration has a large influence near the ice edge but none inside 

the Arctic. Ice thickness provides a very complementary -albeit comparatively smaller in 

amplitude. This data set allows a constraint on internal variability also inside the central Arctic. 

Fig. 9 shows the result for ENVISAT sea-ice thickness product and Fig. 10 shows the same for 
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C2SMOS data set. We can see how the influence of C2SMOS is larger than ENVISAT, as 

CRYOSAT is better tailored for retrieving thick SIT and because it is combined with SMOS 

that can retrieve thin ice thickness. As a matter of fact, SIT in 2011 become a more important 

data set for constraining internal variability error than SIC. Another striking difference is the 

increase of importance of temperature and salinity profile in the Arctic with the emergence of 

ice-tethered profilers. 
 

 

 

Figure 10. Degree of Freedom of Signal of the ice thickness (from C2SMOS), ice concentration, all ocean observations, 

and the total by assimilation in November 2011. 

  



 

 
Deliverable 6.11  

 

Version 1.4 Date: 30 November 2021  page 19 
 

In Fig. 11, we show the time series of the assimilation diagnostic. We can notice that the Root 

Mean Square Error (RMSE) of ice thickness reduces from over 1.5 m to below 1 m during the 

ENVISAT era and fluctuated between 0.5 m and 0.75 during the C2SMOS era. We can notice 

how error grows up slowly as sea-ice thickness observations are missing during summertime. 

A very important aspect of an ensemble prediction system is its reliability - i.e., its capacity to 

predict its error. Therefore, we are adding the estimated error (with a magenta line), which in a 

well-balanced system should be of comparable level to the RMSE. We can see that this is nicely 

satisfied during the Envisat-era but that the estimated error is too low compared to the RMSE 

during the C2SMOS era. In the latest attempt, we had inflated the observation error from the 

data provider by a factor 2 but the reliability is still too low and further iteration will need to be 

carried out in the future. sea-ice 

 

 

 

Figure 11. Sea ice thickness as result of assimilation diagnostic of the reanalysis with assimilation of SIT. The red line 

is the RMSE vs assimilated data before analysis, the green line is the observation standard deviation (in meter). The 

blue line is the ensemble spread (model uncertainty). The magenta line is the estimated total error (which is √(〖spread

〗^2+〖obs_std〗^2). 
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6. Impact of hydrological observations for the prediction of 
spring floods, river ice breakup and freshwater flow to the 
Artic Ocean (SMHI contribution) 

Objectives 

The aim of this activity is to demonstrate the added value of the integrated arctic observation 

systems (iAOS) for enhancing and make available hydrological model predictions for the major 

Arctic rivers. The main objective is to combine the river discharge data from the Arctic 

Hydrological Cycle Observing system (Arctic-HYCOS) - that was assessed and enhanced in 

INTAROS WP2 – with the pan-Arctic hydrological model Arctic-HYPE provided by SMHI 

(http://hypeweb.smhi.se), to predict and monitor fresh water inflow to the Arctic Ocean and 

changes in Arctic hydrological regimes. The demonstration case consists of an operational 

application of the Arctic-HYPE model providing daily analyses of the last 60 days, and medium 

range forecast of the coming 10 days. The Arctic-HYPE analyses and forecasts are stored at 

SMHI open data repositories and will be made available using OPeNDAP server technology. 

Arctic-HYCOS observations are accessed by the operational service using the tools and 

metadata provided by INTAROS WP2 catalogue (https://catalog-

intaros.nersc.no/dataset/arctic-hycos-hydrological-data/). 

One of the goals is to demonstrate the improvement of the pan-Arctic hydrological analyses 

and forecasts by assimilating the river discharge data in the operational Arctic-HYPE 

application. A second goal is to demonstrate the ability to build user-tailored data products 

based on the Arctic-HYPE data accessed through an OPeNDAP server. The latter will be 

illustrated by a use-case in Republic of Sacha (Yakutia), in Far-East Russia, where a sub-set of 

the Arctic-HYPE model is used for spring flood and river ice breakup forecasting in the major 

Yakutia rivers.  

Pan-Arctic hydrological model Arctic-HYPE 
 

Arctic-HYPE version 4.2 is a new pan-Arctic application of the hydrological model HYPE 

(Hydrological Predictions for the Environment; Lindström et al. 2010; SMHI 

http://hypeweb.smhi.se) simulating water balance of glaciers, snow, soil, lakes and rivers, 

representing processes such as runoff, river discharge and water level, and river ice growth, 

melt and breakup. It is based on Arctic-HYPE version 3.1 which was previously applied to the 

Lena River basin (Gelfan et al., 2017) and the Hudson Bay complex (MacDonald et al, 2018). 

The model domain covers the land areas draining into the Arctic Ocean and related water bodies 

in the northern seas as defined in Fig. 12. The total model area is 26 Mkm2 distributed on 34421 

sub-basins with a median area of 623 km2. Main improvements compared to Arctic-HYPE v3.1 

are a) improved sub-basin delineation based on the World-wide HYPE (Arheimer et al, 2020) 

with further adjustments to the Arctic-HYCOS station locations, b) a new parameterization of 

frozen soil impact on runoff generation, c) overall improved calibration of water balance and 

cryosphere processes including evaporation, snow, and river ice using primarily local 

observations from Yakutia river gauges and research basins. Daily forecast for the next 10 days 

is produced with meteorological forcing data from the ECMWF deterministic medium range 

weather forecasts. The forecast model is initialized by an analysis of the previous 60 days, 

forced by the HydroGFD v3 temperature and precipitation data (Berg et al, 2017), in which the 

http://hypeweb.smhi.se/
https://catalog-intaros.nersc.no/
https://catalog-intaros.nersc.no/
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Arctic-HYCOS data will be assimilated to improve the initialization. The historical simulations 

include daily river discharge for the period 1979 to 2019. 

Arctic-HYPE v4.2 OPeNDAP data service 

The previous version of the Arctic-HYPE model (v3.1) was disseminated through an interactive 

map browser service at http://hypeweb.smhi.se. Users could download data from one sub-basin 

at the time by selecting the location in the web map interface. All data were openly available; 

however, the limitation of data access through the interactive map browser prevented structured 

data access, access of larger parts of the model domain. Data from the full model domain was 

available for licensed users, but only through a FTP server, with the backside that users had to 

download data from the full data domain before extracteing their sub-domain of interest. 

 

To improve the Arctic-HYPE data access, and to open up for structured retrieval through the 

iAOS, a new data dissemination service has been developed using a THREDDS data server 

implementing the OPeNDAP protocol. The server will be hosted at www.smhi.se providing 

Arctic-HYPE data in NETCDF format following the CF-convention 

(http://cfconventions.org/). The operational implementation of the server is still on hold due to 

security measures following the COVID-19 pandemic, but it is expected to be online later 

during 2021. 
 

 

 
 

Figure 12. Pan-Arctic drainage basin of the Arctic Ocean and related water bodies in the northern seas (PADB) as 

represented in the Arctic-HYPE model (grey shaded areas) and the locations of the Arctic-HYCOS river discharge 

stations (red and black dots); the dark-grey area represent the drainage basin of the observational network, whereas 

the light-grey area represent the ungauged part of the PADB. Drainage basin of the Arctic Ocean and related water 

bodies in the northern seas as represented in the Arctic-HYPE model (light grey), the location of the Arctic-HYCOS 

stations and their upstream drainage basins (dark grey). 

Yakutia spring flood and river ice breakup forecasting 

A sub-set of the Arctic-HYPE model covering the Republic of Sacha (Yakutia) in Far East 

Russia, was used to develop a spring flood and river ice breakup forecasting service (Fig. 13). 

This use-case is developed in collaboration with the HYPE-ERAS and Hydrology TEP projects 

http://hypeweb.smhi.se/
http://www.smhi.se/
http://cfconventions.org/
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with partners from Russian and Japan, funded through a Belmont Forum Arctic II collaborative 

research action and the European Space Agency, respectively. For the spring flood 2020, the 

new version of Arctic-HYPE (v4.2) was implemented to run operationally in the SMHI 

production system, publishing the outputs of the 10-day forecast and 60-day analysis daily in 

an internal offline version of the OPenDAP server. Results were extracted for selected locations 

in the Yakutia domain as exemplified in Figure 3, which show the forecast issued 2020-05-08 

for the Lena River at Kangalassy, just upstream of the city of Yakutsk. Similar forecast plots 

were produced for about 90 points of interest (Fig. 13). The forecast points were selected based 

on availability of in-situ observation as well as stakeholder interest. A summary of the forecasts 

providing information on the expected river ice breakup dates, and river water level tendencies 

were made every day by collaborators at the Melnikov Permafrost Institute in Yakutsk and 

communicated with the local stakeholders. The 2020 river ice breakup in the Lena River at 

Yakutsk took place on the 11th of May, which correctly predicted by the Arctic-HYPE forecast 

issued on the 8th of May (Fig. 14). A few days after the on-set of ice flow in the river, an ice 

jam was developed in the Lena River at Kangalassy; downstream of Yakutsk; with flooding of 

parts of the city.  

 

This use-case illustrates how the Arctic-HYPE data may be used in a future application when 

it is made available in the open OPeNDAP server. It should also be noted that in this example, 

observations of water level and river ice conditions from Roshydromet were collected in 

collaboration with local stakeholders and used for verification of the hindcast model results. 

River ice, water level and river discharge data set from historical period 2008-2017 were used 

to establish first of all stage-discharge relationships to transform the discharge simulated by the 

model to water level predictions, and secondly long-term statistics on most efficient river ice 

porosity trigger break up and ice flow conditions (Fig. 14). These data are not part of the iAOS, 

but the use-case illustrates the situation where a local user can combine the open available data 

provided by the iAOS with their own data to produce enhanced forecasting products. 

  

Figure 13. Impression of the HYPE-ERAS forecast service available at http://hype-eras.org/forecasts showing a map 

of the Yakutia-HYPE model, location of forecast points (white markers), and time series of river discharge and water 

level for a selected forecast point. 

http://hype-eras.org/forecasts
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Figure 14. Arctic-HYPE forecast for Lena River at Tabaga (upstream of the city of Yakutsk), forecast issue date 2020-

05-08. Hindcast and available observations (blue lines and symbols) and forecast (red lines and symbols), from the top, 

1) precipitation in the upstream area (mm), 2) mean air temperature (dotted lines indicate minimum and maximum), 

3): snow water equivalent (mm), 4): river discharge (m3/s), 5t) river water level (m), 6) ice thickness (cm) and so-called 

ice-processes. 

7. Summary  
 

This report summarizes results of the work performed in Task 6.1 and gives recommendations 

on how to use different observational or reanalysis data sets, and what effects to be expected. 

The main goal of the task was to improve the skill of climate predictions, by means of 

investigating the benefits related to the exploitation of Arctic data collected in iAOS. Benefits 

for the climate modelling community translate directly into user benefits also for stakeholders 

of climate services such as the European Copernicus Climate Change Service (C3S). 
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Climate prediction has gone through various improvements during the last 10 years, with the 

common goal of increased prediction skill on the seasonal to decadal time scale. Sources of 

improved skill are seen in initialization methods, improved climate models, size of the 

prediction ensemble, and a wider usage of observational data in the initialization schemes. 

Thereby especially observations in the Arctic are expected to boost the development due to an 

existing under-coverage of that area and due to the sensitive sea-ice cover in the area. Inclusion 

of Arctic data in initial conditions to start the model from, for climate prediction is expected to 

improve the prediction skill. In addition, access to Arctic observational data (not used in the 

initial conditions) allows for model evaluation and skill assessment independent of the initial 

fields. 

 

Consequently, a key ingredient to skillful seasonal-to-decadal climate prediction is the use of 

high-quality observational data, that covers a sufficiently long period, typically at least a few 

decades to robustly test their impact. This emphasizes the need - from a user perspective - to 

sustain and continue the production of the various iAOS products. 

 

Here we made use of three different datasets provided through the iAOS, developed in the 

INTAROS project, namely CERSAT sea-ice concentrations, C2SMOS sea-thickness, and 

Arctic-HYCOS river discharges. 

 

CERSAT sea-ice concentrations were used in two ways: for assessment of prediction skill and 

for assimilation into initial conditions.  

 

The skill was assessed for the EC-Earth3 quasi-operational decadal climate predictions 

regarding September Northern Hemisphere sea-ice area for a lead time of 11 months (based on 

the period 1992-2020; correlation of 0.83), without sea ice concentration in the start fields, and 

regarding the quality of updated assimilation experiments providing potentially better initial 

conditions for climate predictions (correlation of 0.9 including long-term trend; 0.58 for 

detrended data, i.e. interannual variability).  

 

In a separate prediction setup, CERSAT sea-ice concentrations also were assimilated for the 

EC-Earth3 seasonal climate prediction system. It is shown that the assimilation of sea-ice 

concentrations does not yield significant benefit for winter seasonal predictions (started on 1 

November). However, the assimilation has a remarkable positive impact on summer seasonal 

predictions (started on 1 May) regarding the sea-ice edge but also regarding remote North 

Atlantic SSTs. The latter is shown to be the result of a so-called atmospheric bridge translating 

the improved sea-ice representation via more realistic large-scale atmospheric variability into 

the SST-signal. 

 

Next, the assimilation method “advance ensemble Kalman Filter (EnKF)“ has been utilized to 

enhance initial conditions for the Norwegian Climate Prediction Model (NorCPM). The flow 

dependent property of the method has been shown to be key for carrying joint update of the 

ocean and sea-ice. The EnKF can handle the non-stationarity of the coupled covariance and 

allows individual update of the multi-category sea-ice state; the latter being crucial for efficient 

reduction of error in sea-ice thickness. Based on this knowledge, NorCPM can achieve skillful 

prediction of sea-ice extent in several regions of the Arctic (improved performance of decadal 
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prediction at high latitude). Assimilation of ice concentration is shown to further improve 

performance over the Arctic shelf and the export of sea-ice through the Fram Strait.  

 

Results demonstrates that the complexity of the respective data assimilation method is of 

importance to optimally use observations that are relatively sparse in the Arctic. NorCPM is 

currently being tested at higher resolution, and we can benefit from using the high resolution 

CERSAT sea-ice concentration data set available in INTAROS Data catalogue.  

 

The NorCPM experiments are especially interesting due to the assimilation of SIT. A reanalysis 

extending from 2002—2021 has been produced combining the ENVISAT-CCI sea-ice 

thickness data until 2010 and the C2SMOS data set that combines the CRYOSAT data set and 

the SMOS sea-ice thickness data that is available in INTAROS Data catalog. Sea-ice thickness 

is shown to be complementary data to ice concentration and hydrographic data (temperature 

and salinity). Assimilation of ice thickness allows for a substantial reduction of error in sea-ice 

thickness (compared to the system only assimilating ice concentration). The system reaches an 

error of about 0.5 meter for the Arctic in winter when observations are available and 0.75 meter 

when observation are not available during summer. We also show that a careful adjustment of 

the observation error is needed to avoid degrading the reliability of an ensemble system.  

 

River discharge data from the Arctic-HYCOS observation network were assessed in INTAROS 

WP2 and is available through the INTAROS data catalogue. It has been used to improve pan-

Arctic hydrological analyses and subsequent forecasts with the Arctic-HYPE model. It should 

be noted that in a first step, the river discharge station locations were used already in the model 

development phase by controlling the river basin delineation, and that the river discharge time-

series were used in sub-sequent model calibration and data assimilation steps. The functionality 

of this workflow is demonstrated via a use-case in the Republic of Sacha (Yakutia), in Far-East 

Russia, where a sub-set of the Arctic-HYPE model is used for spring flood and river ice breakup 

forecasting in the major Yakutia rivers.  

8. Future perspectives and lessons learned  

Recommendations 
 

Recommendations and lessons learned resulting from Task 6.1 are: 

• Assimilation of sea-ice concentrations provide better initial conditions for climate 

predictions that lead to improved prediction skill for time scales from seasons a year. 

There is indication that the largest effect can be found during summer. 

• It is shown that the assimilation of sea-ice concentration is particularly beneficial for 

predictions along the sea-ice edge while sea-ice thickness is more important for the 

central Arctic. Hence, the assimilation of both is complementary and yields the best 

overall result. The assimilation of C2SMOS data provides significantly better results 

compared to ENVISAT CCI. 

• Assimilation of Arctic data to produce initial fields should be carried out typically at 

least a few decades to robustly test the impact on prediction quality.  

• Arctic river runoff predictions for regional and/or pan-Arctic applications can be 

improved by assimilation of observational data, but the access to provisional data need 

to be improved for real-time analyses. 
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Exploitation 
 

Stakeholders of this task, 6.1, include the climate prediction community, climate services such 

as the European Copernicus Climate Services (C3S) and the respective users in various societal 

and economic sectors. For the benefits of stakeholders, results from the task can be and should 

be further exploited. 

 

The output of this task includes improved ways of prediction skill assessment and improved 

predictions, whereby the improvement relates to the availability of observational data, or data 

that is derived from observations. These results should be further exploited after the end of the 

project by climate prediction groups. From the recommendations above it appears obvious that 

• Sea-ice concentrations and sea-ice thickness together should be assimilated routinely 

into the assimilation procedures that generate initialization conditions for the respective 

climate model. Updates of those observations data should be utilized as soon as 

available. Thereby, also improvements of past observations, decades back, would have 

a positive effect on the initial fields. 

• A more general way of exploiting sea-ice data is the inclusion into major reanalysis 

products by ECMWF, which are easily accessible by numerous climate modelling and 

prediction groups. 

• Runoff data were available should be routinely used for reanalysis products. Those in 

turn could be used for improved runoff predictions providing river discharge to the 

climate prediction community and forecast products for local and regional stakeholder. 

Roadmap 
 

A roadmap towards a sustainable iAOS with a benefit for climate prediction needs to ensure 

continuous access to sea-ice concentration and thickness data, for forthcoming new 

observations and backwards in times. Data need to be ready as input to assimilation into 

prediction and reanalysis systems. Here we demonstrated accessibility and usefulness for 

climate prediction models. Again, it is worth to note that availability of the observations data 

for standard re-analysis products at ECMWF is essential because these products are strongly 

used by the climate prediction communities. 

 

A roadmap for a sustainable river discharge observation system should be based on (1) user 

requirements ranging from pan-Arctic climate and ocean modelling to regional and local flood 

forecasting (2) strengths and weaknesses of the traditional in-situ observation networks 

(assessed in WP2) (3) the potential of existing and future satellite missions and remote sensing, 

and (4) the capacity of hydrological model and data assimilation to integrate in-situ and remote 

sensing data to fill the temporal and spatial gaps. The in-situ based river discharge data provided 

by national hydrological services will be the basis also in a future monitoring system but need 

to be improved primarily in terms of accessibility and interoperability.  

 

Observations of river water level by satellite altimetry and subsequent transformation to river 

discharge will also be a very important contribution to a future monitoring system, which will 

extend the spatial coverage of the current observation system and potentially increase access to 

observations in near real time. However, these methodologies and data were not part of 

INTAROS. Even with increased spatial coverage by satellite data, the hydrological model will 
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be a necessary ingredient to fill the temporal and spatial gaps in the available observations to 

obtain a sustainable and reliable river discharge monitoring system. 
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