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EXECUTIVE SUMMARY 

This document, Deliverable 6.7 - Quantification of GHG budgets for selected regions in the 
Arctic based on the assimilation of multi-disciplinary data layers into an atmospheric 
modelling framework, including the identification of key processes across disciplines that 
govern Arctic greenhouse gas cycles and their links to climate change, describes the work 
conducted within the atmospheric component of INTAROS Task 6.5. The main contributions for 
the work reported herein were produced by partner MPG, with additional contributions from 
UB. 
 
The East Siberian Arctic Shelf hosts vast carbon reservoirs at risk of degradation and may be a 
strong emitter of methane to the atmosphere. Yet, estimates of its annual methane emissions 
and their key controls are highly uncertain. In the presented project, we estimated these 
emissions with a geostatistical inverse model from atmospheric observations over seventeen 
months in Tiksi (Russia), Barrow (Alaska) and Ambarchik (Russia). Our simulations yielded annual 
methane emissions of 0.3 – 1.5 Tg CH4, which is on the low end of previously reported estimates 
(0 – 17 Tg CH4 yr-1). Our geostatistical approach allows us to test the compatibility of a large 
number of spatiotemporal emissions patterns with the atmospheric signals. In this context, we 
specifically tested the suitability of novel data products from the INTAROS database to improve 
model performance. Our model attributes highest emissions to shallow waters and to ice-free 
and potentially freeze-up periods, but also finds substantial emissions during the ice-covered 
period. We do not detect substantial emissions of stored methane during ice breakup. Our 
results suggest that mixing and stratification of the water column and cracks in sea ice could be 
among the dominant controls of methane emissions from the shelf to the atmosphere. Other 
explanations are possible and discussed, including limitations of our study. The information 
provided by the INTAROS database led to minor improvements in the explained variability of 
atmospheric greenhouse gas time series, indicating the high quality of the novel products. 
However, since parameter selection basically replaced existing oceanic variables by better-
performing new ones for the same parameter but did not add a previously omitted parameter 
to the highest-ranking models, we could not gain novel process insights. Our study suggests that 
the relevance of the shelf for the global atmospheric methane burden is currently small, but 
also reveals limitations of the Arctic atmospheric greenhouse gas observation network. 
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1. Introduction 
Carbon	 emissions	 from	 the	 Arctic	 Ocean	 domain	 into	 the	 atmosphere	 are	 poorly	
constrained	to	date,	and	particularly	fluxes	from	the	large	shelf	areas	are	subject	to	high	
uncertainties.	At	the	same	time,	vast	subsea	carbon	reservoirs	in	the	Arctic	are	at	risk	of	
degradation	 (James	 et	 al.,	 2016),	which	may	 lead	 to	 increasing	 venting	 of	 greenhouse	
gases	 to	 the	 atmosphere	under	warming	 conditions.	 Insight	 into	 the	mechanisms	 that	
govern	 the	 sustainability	 of	 these	 reservoirs	 and	 greenhouse	 gas	 exchange	 with	 the	
atmosphere	is	therefore	essential	for	the	assessment	of	Arctic	carbon-climate	feedbacks	
and	the	simulation	of	accurate	future	climate	trajectories.	At	the	same	time,	for	the	Arctic,	
and	 particularly	 for	 the	 Arctic	 Ocean,	 available	 observational	 databases	 are	 limited,	
compared	to	other	global	regions.	Therefore,	new	data	assimilation	schemes	need	to	be	
developed	that	optimize	the	integration	of	existing	data	sources	across	disciplines,	thus	
helping	 to	 improve	our	understanding	of	 carbon	budgets	and	underlying	 carbon	cycle	
processes.	 

One	of	these	Arctic	shelf	regions,	the	East	Siberian	Arctic	Shelf	(ESAS),	has	in	recent	years	
attracted	interest	as	a	potential	globally	important	source	of	CH4	(Shakhova	et	al.,	2010;	
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2014).	 The	 CH4	 cycle	 in	 the	 shelf	 is	 a	 complex	 system	 of	 a	 variety	 of	 sources,	 sinks,	
reservoirs	and	transport	mechanisms.	Accordingly,	the	net	methane	budget	of	the	ESAS	
domain,	and	its	potential	reaction	to	Arctic	climate	change,	is	complicated	to	assess,	and	
substantial	 uncertainties	 remain	 between	 existing	 studies	 that	 aimed	 at	 constraining	
these	processes.	Carbon	sources	in	the	ESAS	seabed	can	be	generally	differentiated	into	
sediments	deposited	by	rivers	and	coastal	erosion	within	the	recent	past	(e.g.	Vonk	et	al.,	
2012),	 subsea	 permafrost	 and	 gas	 hydrates	 originating	 from	 past	 ice	 ages	 (e.g.	
Romanovskii	 et	 al.,	 2005),	 as	 well	 as	 natural	 gas	 (Cramer	 and	 Franke,	 2005).	 These	
reservoirs	can	act	as	primary	sources	of	methane	into	the	ESAS	water,	and	eventually	into	
the	atmosphere,	with	higher	emission	rates	expected	 in	case	warming	destabilizes	 the	
carbon	 pools.	 Such	 warming	 can	 e.g.	 be	 linked	 to	 natural	 warming	 of	 the	 seafloor	
permafrost	 that	 has	 been	 induced	 from	 the	 top	 by	 ocean	 waters	 since	 the	 Holocene	
transgression	(e.g.	Dmitrenko	et	al.,	2011),	by	warm	water	input	from	Arctic	rivers	(e.g.	
Romanovskii	et	al.,	2005),	or	by	a	continuous	geothermal	heat	flux	from	the	bottom	(e.g.	
Dmitrenko	et	al.,	2011).	 

Constraints	 on	 present-day	 ESAS-wide	 methane	 emissions	 to	 the	 atmosphere	 are	
uncertain,	with	budget	estimates	in	the	literature	ranging	between	virtually	zero	fluxes	
(e.g.	Berchet	et	al.,	2016)	and	emissions	as	high	as	17	Tg	CH4	yr-1	(Shakhova	et	al.,	2014).	
In	addition,	the	dominant	patterns	and	mechanisms	of	methane	release,	including	the	role	
of	 sea	 ice	 and	 the	 spatial	 distribution	 of	 emissions,	 are	 uncertain	 and	 have	 not	 been	
assessed	in	a	single	framework	with	data	that	cover	both	the	whole	shelf	and	at	least	a	
full	year.	Part	of	 the	controversy	regarding	 the	net	emission	budgets	are	 linked	 to	 the	
different	methods	employed	to	constrain	these	numbers;	however,	a	dominant	source	for	
uncertainties	in	all	studies	focusing	on	this	subject	so	far	is	the	scarcity	of	observations,	
and	therefore	the	need	to	extrapolate	information	to	very	distant,	and	often	also	different	
parts	of	the	domain.	 

Our	work	conducted	in	the	context	of	INTAROS	WP	6.5	aims	at	an	integrated	assessment	
of	 the	methane	emissions	 from	the	shelf	 to	 the	atmosphere,	 including	estimating	 their	
magnitude,	finding	spatiotemporal	patterns	and,	if	possible,	linking	them	to	controlling	
mechanisms.	 Our	 primary	 approach,	 so-called	 geostatistical	 inverse	 modeling	 (GIM),	
combines	 observations	 from	 tower	 based	 atmospheric	 greenhouse	 gas	mole	 fractions	
with	simulations	of	atmospheric	transport	in	the	polar	region	and	ancillary	data	layers	
that	help	to	describe	the	spatio-temporal	variability	of	greenhouse	gas	processes	within	
the	target	domain.	In	this	context,	one	major	objective	was	to	exploit	new	data	sources	
that	have	become	available	in	the	INTAROS	database	and	integrate	them	into	an	improved	
modeling	 framework	 that	 produces	 better	 matches	 between	 observed	 and	 simulated	
greenhouse	gas	patterns. 
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2. Data	and	methods 

2.1. Geostatistical	inverse	modeling	in	the	ESAS	domain 

Our	method	constrains	methane	emissions	from	surface	sources	to	the	atmosphere	based	
on	measurements	of	 the	atmospheric	methane	mole	 fraction	observed	at	a	distributed	
network	 of	 monitoring	 towers.	 The	 link	 between	 these	 quantities	 is	 atmospheric	
transport	and	solving	for	fluxes	means	inverting	the	transport	equation.	In	other	words,	
atmospheric	 transport	 modeling	 allows	 us	 to	 identify	 which	 areas	 within	 the	 target	
domain	influenced	an	atmospheric	GHG	observation	taken	at	a	specific	time	and	place,	
and	 therefore	 facilitates	 to	 attribute	 sink	 and	 source	 strengths	 to	 these	 areas	 that	
correlate	 with	 the	 observed	 patterns	 in	 atmospheric	 GHG	 mole	 fractions.	 Since	
observational	 datasets	 are	 scarce,	 usually	 the	 problem	 is	 under-constrained,	 and	 thus	
requires	additional	information	sources	to	allow	for	non-equifinality	across	large	subsets	
of	potential	solutions.	In	this	context,	valuable	information	can	be	assimilated	from	data	
layers	that	describe	the	structure	of	sources	and	sinks	within	the	target	domain,	and	their	
temporal	 variability	 –	 termed	 auxiliary	 variables	 in	 our	 framework.	 An	 objective	
evaluation	of	such	auxiliary	variables	is	possible	using	geostatistical	inverse	modeling. 

2.1.1. Model	domain,	transport	model	and	boundary	conditions 

We	simulated	surface-atmosphere	fluxes	in	a	domain	of	3200	km	×	1600	km	on	32	km	
resolution	(see	also	Figure	1),	comprising	the	East	Siberian	Arctic	Shelf	(2.0	×106	km2),	
other	ocean	surfaces	(1.2	×106	km2),	as	well	as	adjacent	tundra	and	taiga	regions	(1.9	×106	
km2).	The	model	was	run	for	a	period	of	17	months	from	July	2014	to	November	2015. 

 
Figure	1:	Modeling	domain	of	the	presented	study,	including	the	location	of	the	three	atmospheric	
monitoring	stations	Tiksi,	Ambarchik	and	Barrow.	The	ESAS	domain	is	separated	here	into	the	three	
subregions	 Laptev	 Sea	 (green	 shading),	 East	 Siberian	 Sea	 (blue)	 and	 Chukchi	 Sea	 (red).	 The	
terrestrial	section	of	the	model	domain	is	actually	about	the	same	size	as	the	ESAS	domain	(see	also	
above). 

We	 linked	 spatially	 distributed	 surface	 fluxes	 to	 atmospheric	 data	 via	 the	 Lagrangian	
transport	model	STILT	in	the	setup	customized	for	the	Arctic	domain	by	Henderson	et	al.	
(2015).	STILT	computes	the	surface	influence	on	a	measurement	(“footprint”)	based	on	
an	ensemble	of	back	trajectories,	and	multiplication	with	surface	fluxes	yields	methane	
enhancements	 over	 background.	 We	 compute	 the	 background	 by	 initializing	 the	
trajectories	 at	 the	 domain	 boundaries	 (or	 end	 of	 simulation)	 using	 a	 global	 methane	
transport	model	(Nunez	Ramirez,	pers.	comm.),	with	 fluxes	optimized	 for	atmospheric	
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data	 including	 the	 stations	 used	 in	 this	 study.	 Transport	 simulations	 accounted	 for	
chemical	methane	loss	in	both	boundary	conditions	and	footprints. 

2.1.2. Atmospheric	data 

Methane	emissions	were	optimized	based	on	data	 from	the	Arctic	monitoring	stations	
Ambarchik	(Reum	et	al.,	2019),	Barrow	(Dlugokencky	et	al.,	1995)	and	Tiksi	(Ivakhov	et	
al.,	2019),	i.e.	all	greenhouse	gas	monitoring	stations	operating	continuously	at	the	coast	
of	 the	 East	 Siberian	 Arctic	 Ocean	 in	 the	 study	 period	 (see	 also	 Figure	 2).	 Data	 were	
selected	following	criteria	used	similarly	in	other	inverse	modeling	studies.	These	criteria	
included	requiring	wind	speeds	of	at	least	3	ms-1	for	Ambarchik	and	Barrow	(following	
Sweeney	 et	 al.,	 2016)	 and	 2.5	 ms-1	 for	 Tiksi	 (following	 station	 operator	
recommendations),	and	a	temperature	inversion	filter	for	Ambarchik	and	Barrow.	 

 
Figure	2:	Footprints	of	the	atmospheric	data	used	for	optimization	in	this	study,	aggregated	over	the	
whole	study	period	and	sorted	into	bins	covering	25	%	of	the	cumulative	influence	each.	 

2.1.3. Inverse	modeling	framework 

Since	 inverting	 the	 transport	 equation	 is	 in	 general	 an	 under-constrained	 problem,	
meaningful	results	in	atmospheric	inverse	modeling	can	only	be	obtained	with	some	form	
of	additional	regularization.	In	greenhouse	gas	modeling,	the	Bayesian	inverse	modeling	
approach	is	often	applied,	where	fluxes	are	nudged	towards	a	prior	estimate,	and	spatial	
and	 temporal	 covariances	 are	 imposed.	 Here,	 we	 employed	 the	 geostatistical	 inverse	
modeling	 approach	 as	 developed	 by	Michalak	 et	 al.	 (2004)	 in	 the	 implementation	 by	
Miller	 et	 al.	 (2014a),	 which	 can	 be	 thought	 of	 a	 Bayesian	 model	 where	 prior	 and	
covariances	are	inferred	from	the	atmospheric	data.	The	inverse	problem	is	formulated	
as	minimizing	the	cost	function	𝐽!"#(𝒇, 𝜷): 

𝐽!"#(𝒇, 𝜷) = (𝒛 − 	𝑯𝒇)𝑻𝑹%&(𝒛 − 	𝑯𝒇) +	(𝒇 − 	𝑿𝜷)𝑻𝑸%&(𝒇 − 	𝑿𝜷)	 	 	 	 (1) 

Here,	H	 is	 the	 atmospheric	 transport	 model,	 z	 observed	 atmospheric	 methane	 mole	
fractions	 and	 f	 the	 posterior,	 optimized	 fluxes.	 R	 and	 Q	 are	 covariance	 matrices	
representing	 the	 so-called	 model-data-mismatch	 and	 the	 prior	 flux	 uncertainties,	
respectively.	The	regression	model	𝐗𝛃	consists	of	the	regressor	matrix	𝐗,	the	columns	of	
which	are	here	called	auxiliary	variables	X$,	and	the	regression	model	coefficients	𝛃.	Prior	
to	optimizing	fluxes,	regression	model	coefficients	are	computed	that	satisfy: 
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(𝐇𝐗)𝐓𝚿&𝟏(𝐇𝐗)𝛃, = 	 (𝚿&𝟏𝐇𝐗)𝐓	𝐳, (2) 

	where 

𝚿 = 𝐇𝐐𝐇( 	+ 	𝐑. (3) 

With	Y	in	equation	(3)	used	as	a	summary	parameter	to	simplify	the	other	equations.	The	
optimal	fluxes	are	then 

𝐟5 	= 	𝐗𝛃, 	+ 	𝐐𝐇(𝚿&𝟏6𝐳 − 𝐇𝐗𝛃,8. (4) 

Our	optimization	algorithm	allows	only	non-negative	solutions	(similar	 to	Miller	et	al.,	
2014b),	 which	 is	 another	 useful	 regularization	 tool	 for	 inferring	 methane	 emissions	
(Miller	et	al.,	2014a).	Studies	that	use	Bayesian	inversion	techniques	usually	report	the	
statistical	 uncertainty	 of	 the	 optimized	 result.	 However,	 in	 our	 case,	 optimized	 flux	
budgets	are	primarily	determined	by	the	regression	model,	and	this	is	not	well	accounted	
for	 in	 the	 Bayesian	 uncertainty	 estimate.	 Therefore,	we	 focus	 on	 uncertainties	 due	 to	
varying	model	setups	instead.	 

2.1.4. Covariance	matrices 

The	covariance	matrices	R	and	Q	determine	the	relative	weights	of	data	and	regression	
model	in	the	flux	estimate,	as	well	as	time	and	length	scales	on	which	the	optimized	fluxes	
deviate	from	the	regression	model.	We	assumed	R	to	be	diagonal	with	the	same	model-
data	 mismatch	 standard	 deviation	 for	 all	 observations.	 We	 parameterized	 Q	 by	
decomposing	 it	 into	 a	 spatial	 and	 a	 temporal	 component	 characterized	 by	 a	 prior	
uncertainty,	a	correlation	length	and	a	correlation	time	(Yadav	and	Michalak,	2013).	In	
the	spatial	model,	we	removed	correlations	between	land	and	ocean	pixels.	We	optimized	
model-data	mismatch,	prior	uncertainty,	correlation	length	and	correlation	time	with	a	
restricted	maximum	likelihood	approach	following	Michalak	et	al.	(2004).	 

2.1.5. Selecting	regression	models	and	evaluating	auxiliary	variables 

We	 evaluated	 the	 compatibility	 of	 regression	 models	 with	 atmospheric	 data	 via	 the	
Bayesian	information	criterion,	BIC,	following	the	description	by	Gourdji	et	al.	(2012):	 

𝐵𝐼𝐶	 = 	 𝐽)*+6𝜷,8 	+ 	𝑝 ∙ 𝑙𝑛(𝑛), 
                             (5) 

where	𝑝	 is	 the	 number	 of	 auxiliary	 variables	 (columns	 of	𝑿),	 and	𝑛	 is	 the	 number	 of	
observations.	The	first	addend,	𝐽)*+6𝜷,8,	is	the	minimum	value	of	the	cost	function 

𝐽)*+(𝜷) = 	𝑙𝑛|𝜳| + (𝒛 − 𝑯𝑿𝜷),𝜳&-(𝒛 − 𝑯𝑿𝜷).                              (6) 

The	BIC	approach	allows	to	find	the	best-fitting	combinations	of	explanatory	variables	for	
the	problem	in	question	while	at	the	same	time	aiming	at	keeping	the	degrees	of	freedom	
of	 the	 final	 equation	 as	 low	 as	 possible.	 In	 other	 words,	 a	 low	 BIC	 score	 indicates	 a	
regression	model	𝑿𝜷, 	that	fits	the	data	well	with	a	small	number	of	explanatory	variables,	
penalizing	both	overfitting	and	collinearity. 
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Since	computing	BIC	is	computationally	cheap,	in	this	study	we	used	it	to	evaluate	a	large	
number	of	regression	models.	In	the	reference	version	of	the	modeling	framework,	i.e.	in	
simulations	 that	 were	 generated	 prior	 to	 adding	 new	 information	 from	 the	 INTAROS	
database,	we	allowed	combinations	of	up	to	seven	auxiliary	variables	out	of	a	pool	of	33	
(see	Section	2.2.1	below	for	details).	We	used	this	as	an	objective	way	to	find	an	unbiased	
prior	flux	estimate	and	as	a	tool	for	finding	the	dominant	spatiotemporal	patterns	in	the	
emissions.	 In	 the	 extended	 version,	 i.e.,	 those	 simulations	 that	 included	 additional	
information	extracted	from	the	INTAROS	database,	five	more	data	layers,	and	additional	
derived	 products,	were	 considered	 (Section	 2.2.2),	while	 keeping	 the	 total	 number	 of	
allowed	auxiliary	variables	allowed	within	a	single	model	at	the	same	level.	 

Kass	and	Raftery	(1995)	suggested	a	scale	for	the	interpretation	of	the	difference	between	
BIC	for	different	models.	On	this	scale,	a	difference	of	less	than	2	indicates	that	there	is	no	
evidence	 for	 the	better	performance	of	a	model,	while	a	difference	of	more	 than	10	 is	
called	 "decisive"	 evidence.	 Following	 their	 suggestion,	 in	 our	 analyses	we	 included	 all	
models	with	all-positive	regression	coefficients	𝜷, 	and	BIC	scores	of	less	than	10	over	that	
of	 the	 best-scoring	 model	 and	 call	 them	 “well-scoring”	 regression	 models.	 For	 some	
analyses,	we	included	only	models	that	satisfied	stricter	criteria:	being	among	the	best	30	
models	in	terms	of	BIC,	RMSE,	correlation	and	mean	bias	between	modeled	and	observed	
atmospheric	data.	This	applied	to	3	–	8	models	per	parameter	set,	and	we	use	these	“best-
scoring”	models	to	verify	the	results	of	the	well-scoring	models.	In	these	sets	of	models,	
we	 assigned	 each	 auxiliary	 variable	 a	 rank	 that	 indicates	 the	 rank	 of	 the	 best-scoring	
model	that	contains	the	variable.	Thus,	the	best	rank	of	0	means	the	variable	is	contained	
in	the	top-scoring	model,	and	a	score	of	1	indicates	the	variable	is	contained	in	the	worst	
of	the	well-scoring	models.	Variables	that	are	not	featured	in	the	well-scoring	models	do	
not	receive	a	score.	We	used	this	scale	to	rank	individual	auxiliary	variables	according	to	
their	compatibility	with	atmospheric	data. 

2.2. Auxiliary	variables	 
2.2.1. Auxiliary	variables	used	in	the	reference	framework 

Based	on	the	available	literature	on	methane	emissions	from	the	East	Siberian	Arctic	Shelf	
and	adjacent	land	areas,	we	created	a	set	of	33	auxiliary	variables,	each	of	which	can	be	
linked	 to	 a	 specific	 surface	 emission	 process.	 Each	 of	 these	 data	 layers	 consists	 of	 a	
gridded	map	representing	a	unique	spatial	or	spatio-temporal,	 respectively,	variability	
that	holds	the	potential	to	explain	emission	patterns. 

Within	the	oceanic	part	of	the	domain,	some	static	data	layers	describe	possible	spatial	
distribution	of	emissions	related	e.g.,	to	emission	hot	spots,	permafrost	cover,	the	shelf	
edge,	 and	attenuation	of	 emissions	with	 increasing	ocean	depth.	Temporarily	 variable	
data	layers	include,	e.g.,	variables	that	are	related	to	wind	speed,	among	them	diffusive	
gas	transfer	and	attempts	to	isolate	the	role	of	storms.	Next,	the	role	of	sea	ice	was	tested	
by	 variables	 representing	 open	 ocean	 fraction,	 ice	 growth	 and	 ice	 retreat.	 We	 also	
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considered	multiplicative	combinations	of	the	variables	that	are	related	to	ocean	depth	
with	the	sea	ice	cover	and	diffusive	gas	transfer	variables. 

In	 addition,	 we	 developed	 variables	 that	 describe	 terrestrial	 emissions	 in	 the	 model	
domain.	Most	importantly,	these	represent	the	spatial	distribution	of	wetlands	and	lakes	
within	the	model	domain.	We	described	these	with	results	from	complex	process-based	
models	 from	 the	 literature	 as	 well	 as	 simple	 models	 for	 wetland	 and	 zero	 curtain	
emissions.	Fire	and	anthropogenic	emissions	were	considered	small	in	our	domain,	and	
thus	ignored. 
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Table	1:	Auxiliary	variables	used	to	describe	methane	emissions	in	the	reference	model	framework. 

Label Description 
ESAS spatial distribution of subsea emissions 
Hot spots Hot spot map based on Shakhova et al. (2010) 
Const. ESAS Constant ESAS emissions 
ESAS<30m Area of ESAS shallower than 30m 
ESAS>30m Area of ESAS deeper than 30m 
Edge ESAS edge (100 m – 500 m depth) 
Ocean depth 
exp-10m Exponential attenuation with ocean depth (𝛼 = 0.1	𝑚!")* 
exp-20m Exponential attenuation with ocean depth (𝛼 = 0.05	𝑚!") 
exp-100m Exponential attenuation with ocean depth (𝛼 = 0.01	𝑚!") 
Kolyma mouth 
Kolyma mouth Location of Kolyma mouth 
Diffusive gas transfer 
k  Gas transfer velocity 
Storms 
Storms-0.5-10 Storm occurrence (𝑑 = 0.5	𝑚!"𝑠, 𝑤#,% = 10	𝑚𝑠!")** 
Storms-1-10 Storm occurrence (𝑑 = 1	𝑚!"𝑠, 𝑤#,% = 15	𝑚𝑠!") 
Storms-0.5-15 Storm occurrence (𝑑 = 0.5	𝑚!"𝑠, 𝑤#,% = 10	𝑚𝑠!") 
Storms-1-15 Storm occurrence (𝑑 = 1	𝑚!"𝑠, 𝑤#,% = 15	𝑚𝑠!") 
Sea ice 
Const. ESAS-Ice ESAS fraction not covered by sea ice 
Ice growth Sea ice growth 
Ice retreat Sea ice retreat 
Combinations of variables 
exp-10m-ice “exp-10m” modulated by sea ice cover 
exp-20m-ice “exp-20m” modulated by sea ice cover 
exp-100m-ice “exp-100m” modulated by sea ice cover 
ESAS<30m-ice “ESAS<30” modulated by sea ice cover 
ESAS>30m-ice “ESAS>30” modulated by sea ice cover 
Edge-ice “Edge” modulated by sea ice cover 
Hot spots-ice “Hot spots” modulated by sea ice cover 
Ice growth-edge “Ice growth” multiplied with “Edge” 
k-exp-10m “k” multiplied with “exp-10m” 
k-exp-20m “k” multiplied with “exp-20m” 
k-exp-100m “k” multiplied with “exp-100m” 
Process-based models for terrestrial emissions 
WSL Climatology of CH4 emissions based on model LPJ-WSL 
bLake4Me Climatology of CH4 emissions based on model bLake4Me 
Simple models for terrestrial emissions 
Const. land Constant land emissions 
SWM Simple Wetland Model 
ZCM Zero Curtain Model 
*The	 attenuation	 factor	𝛼	 describes	 all	 mechanisms	 that	 control	 how	much	 CH4	 dissolves	 on	 the	 way	
through	the	water	column	from	ocean	bottom	to	the	atmosphere.	 
**Different	combinations	of	a	scaling	coefficient	d	and	a	cutoff	windspeed	w	were	used	to	determine	which	
pixels	within	the	model	domain	were	affected	by	storms. 
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A	detailed	description	of	 the	derivation	of	 the	auxiliary	data	 layers	 listed	 in	Table	1	 is	
omitted	 here	 for	 means	 of	 brevity,	 but	 will	 be	 made	 available	 in	 the	 supporting	
information	 of	 a	 publication	 in	 preparation	 (Reum	 et	 al.,	 2022).	 To	 facilitate	 a	 direct	
comparison	 to	 the	 additional	 data	 layers	 obtained	 from	 the	 INTAROS	 database	 (see	
Section	2.2.2),	some	details	on	sea	ice	products	used	are	summarized	here.	To	describe	
the	physical	sea	ice	barrier,	the	remote-sensing	sea	ice	concentration	product	ASI-SSMI	
(Kaleschke	 et	 al.,	 2001;	 Spreen	 et	 al.,	 2008)	 was	 used,	 which	 is	 distributed	 with	 a	
resolution	of	12.5	km,	 spatially	and	 temporally	 interpolated,	and	with	a	5-day	median	
filter	applied.	Sea	ice	growth	was	described	by	the	differences	between	consecutive	time	
steps	 of	 the	 sea	 ice	 concentration	 product.	 This	 approach,	 postulating	 a	 quasi-
instantaneous	 link	 between	 ice	 formation	 and	 CH4	 emissions,	 was	 not	 suitable	 for	
describing	mixing	of	the	complete	water	column	to	the	average	depth	of	the	ESAS,	which	
occurs	on	a	timescale	of	months	(Janout	et	al.,	2016).	However,	it	may	capture	mixing	of	
upper	water	layers	or	CH4	release	from	brine.	Finally,	methane	accumulated	below	or	in	
sea	 ice	 in	winter	may	be	released	upon	 ice	breakup,	a	process	 that	may	 influence	any	
region	of	the	temporarily	ice-covered	ocean	in	case	the	sea	ice	can	be	regarded	as	a	mostly	
impermeable	cap.	This	process	was	modeled	as	parameter	‘ice	retreat’	similarly	to	sea	ice	
growth	based	on	differences	between	consecutive	time	steps	of	the	sea	ice	concentration	
product.	Shortcomings	of	this	approach	are	that	it	may	be	sensitive	to	noise	in	the	sea	ice	
concentration	product,	accumulation	times	are	ignored,	and	that	the	resulting	variable	is	
sensitive	to	both	sea	ice	melt	and	sea	ice	drift. 

2.2.2. Additional	auxiliary	variables	retrieved	from	the	INTAROS	database 

At	 the	 time	 of	writing,	 the	 INTAROS	Data	 Catalogue	 (https://catalog-intaros.nersc.no)	
comprised	137	datasets	provided	by	38	contributing	organizations.	These	datasets	cover	
a	wide	variety	of	spatial	and	temporal	resolution,	 target	domains	and	timeframes,	and	
research	 fields.	 The	 range	 of	 contributions	 included,	 e.g.,	 site-level	 data	 on	 vegetation	
characteristics	or	carbon	and	energy	flux	rates,	transects	of	ocean	observations	based	on	
various	commercial	and	research	vessels,	or	spatially	explicit	gridded	datasets	on	ocean	
and	land	surface	properties	based	on	remote	sensing	information.	 

For	the	presented	data	assimilation	study,	the	basic	requirement	for	the	provision	of	new	
auxiliary	data	layers	was	a	continuous	spatial	grid	of	information	that	covered	the	entire	
target	domain.	As	described	above,	such	data	layers	may	both	be	static	or	time-varying.	
In	the	latter	case,	a	continuous	record	of	observations	within	the	timeframe	set	for	this	
experiment	 was	 required.	 Since	 most	 of	 the	 information	 provided	 by	 the	 INTAROS	
database	 was	 either	 at	 site-level	 or	 episodic	 coverage	 of	 ocean	 transects,	 only	 two	
datasets	remained	that	could	be	tested	for	our	data	assimilation	approach.	Descriptions	
in	the	following	were	largely	taken	over	from	the	INTAROS	database:	 

Atmospheric	Total	Water	Vapor	over	 ice	and	open	ocean	(University	of	Bremen,	
UB).	 This	 dataset	 merged	 the	 precipitable	 water	 vapor	 content	 from	 the	 microwave	
imager	AMSR-E/2	over	open	water	and	from	the	microwave	sounder	AMSU-B	and	MHS	
over	 ice,	 creating	 an	 Arctic-wide	 daily	 dataset	 for	 total	water	 vapor	 (TWV)	 of	 50	 km	
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resolution	with	seamless	coverage	from	the	high	Arctic	to	mid	latitudes	from	2002	to	date	
(see	 Figure	3	 for	 an	 example).	 This	 new	approach,	 described	 in	 detail	 in	 Scarlat	 et	 al.	
(2018),	 allowed	 to	 apply	 the	method	 also	 to	 regions	 where	 previously	 no	 data	 were	
available,	and	ensured	a	more	consistent	physical	analysis	of	the	satellite	measurements	
by	taking	into	account	the	contribution	of	the	surface	emissivity	to	the	measured	signal. 

 
Figure	3:	Daily	TWV	maps	of	the	Northern	Hemisphere	obtained	from	the	new	algorithm	(c)	and	
compared	to	the	original	AMSU-B	algorithm	(d)	on	December	01,	2009.	Figure	taken	from	Scarlat	et	
al.	(2018),	modified. 

Ocean-Sea	Ice	Synthesis	from	2007-2016	(University	of	Hamburg,	UHH).	Using	the	
Massachusetts	Institute	of	Technology	general	circulation	model	(MITgcm,	Marshall	et	al.,	
1997)	and	its	adjoint,	in	this	project	both	in	situ	and	remote	sensing	observations	were	
used	 to	 produce	new	 synthesis	 products	 for	 the	Arctic.	 The	model	 domain	 covers	 the	
entire	Arctic	Ocean,	north	of	the	Bering	Strait	and	~44N	in	the	Atlantic	Ocean.	The	data	
assimilation	produced	a	substantially	improved	representation	of	the	daily	mean	state	of	
Arctic	sea-surface	temperature	(SST),	sea	ice	concentration	(SIC),	and	sea	ice	thickness	
(SIT)	 (Figure	 4).	 Datasets	 also	 include	 continuous	 grids	 of	 e.g.	 ocean	 potential	
temperature,	salinity,	zonal	and	meridional	velocity,	freshwater,	or	heat	fluxes	at	the	sea	
surface	(Lyu	et	al.,	2021).	 

 
Figure	4:	Mean	 sea-ice	 thickness	 (SIT)	 differences	 between	CryoSat2-SMOS	merged	data	and	 (b)	
INTAROS-ctrl,	(c)	INTAROS-opt,	(d)	TOPAZ4,	(e)	PIOMAS,	and	(f)	ECCOv4r4.	The	contour	interval	is	
0.1	m.	Figure	taken	from	Lyu	et	al.	(2021).	 
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For	integration	into	the	presented	data	assimilation	study,	all	new	datasets	were	reduced	
to	the	selected	simulation	timeframe,	and	re-projected	onto	the	target	grid	with	a	regular	
32	km	resolution	that	is	described	above	in	Section	2.1.1.	From	the	UB	dataset	on	total	
water	vapor	(TWV),	only	the	original	product	was	used.	From	the	UHH	dataset,	a	subset	
of	the	available	list	of	parameters	was	chosen,	including	additional	derived	parameters	as	
described	below	in	Table	2. 

Table	2:	Additional	primary	auxiliary	variables	based	on	information	from	the	INTAROS	database,	
which	were	added	to	form	the	extended	version	of	the	model	framework. 

Label Description 
UB: Total water vapor dataset 
UB_TWV Total water vapor concentration  
UHH: Arctic synthesis products based on MITgcm 
ESAS Ice Open ocean fraction (1 – Sea Ice Concentration) 
mitgcm_SIT Sea Ice Thickness 
mitgcm_SITinv Inverse Sea Ice Thickness (1/SIT) 
mitgcm_salt Ocean salinity 
mitgcm_qnet Net surface heat flux 
mitgcm_qnetCool Positive surface heat flux (-1*Qnet, positive values only) 

In	 the	 extended	 version	 of	 the	 data	 assimilation	 framework,	 besides	 considering	 the	
original	data	layers	also	possible	derived	products	made	use	of	new	information	provided	
by	the	added	data	layers	from	the	INTAROS	database.	This	included	e.g.	the	derivation	of	
a	diffusive	transfer	coefficient	k	using	the	UHH	salinity	product,	or	the	replacement	of	the	
previous	open	ocean	fraction	layer	by	a	new	one	based	on	the	MITgcm	synthesis	product.	 

3. Results	and	discussion 
The	key	results	summarized	in	the	following	sections	are	not	based	on	a	single	model	
run,	therefore	they	do	not	provide	single	numbers	as	e.g.	flux	budgets	for	the	target	
domain,	or	a	unique	ranking	of	processes	influencing	the	methane	emissions.	Instead,	
we	provide	statistics	across	multiple	 inversion	results	 that	reflect	both	 the	diverse	
modeling	 setups	as	well	 as	 the	 lists	of	 combinations	of	 auxiliary	variables	 that	 e.g.	
constitute	 the	 well-scoring	 models	 optimized	 for	 each	 of	 these	 combinations.	
Accordingly,	budgets	are	given	as	ranges,	and	the	evaluation	of	the	roles	of	specific	
processes	is	based	on	their	relative	importance	across	multiple	model	runs.	 

3.1. Results	from	the	reference	modeling	framework 

The	 simulations	 based	 on	 the	 reference	 modeling	 framework,	 i.e.	 the	 base	 runs	
excluding	 the	 new	data	 layers	 from	 the	 INTAROS	database,	 indicated	 an	 enhanced	
role	of	bathymetry,	i.e.	dominant	emissions	from	shallow	water	regions	of	the	ESAS	
domain.	In	addition,	we	were	able	to	derive	indications	for	flux	contributions	linked	
to	 sea	 ice	 dynamics,	 where	 our	 results	 suggested	 strong	 emissions	 during	 sea	 ice	
formation	in	fall,	sustained	emissions	throughout	the	winter	in	spite	of	a	seemingly	
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closed	 sea	 ice	 cover,	 and	 only	 marginal	 emissions	 during	 sea	 ice	 retreat.	 Several	
emission	patterns	that	were	developed	based	on	the	literature	are	not	supported	by	
our	results.	This	applies	to	–	besides	the	case	of	sea	ice	melt	–	all	variables	that	relate	
shelf	 emissions	 to	 wind	 speed,	 enhanced	methane	 release	 linked	 to	 geologic	 fault	
lines,	 and	 emissions	 from	 the	 shelf	 edge.	 This	 suggests	 that	 these	 patterns	 and	
associated	processes,	even	though	they	may	contribute	to	 the	total	budgets,	do	not	
dominate	the	spatiotemporal	distribution	of	emissions. 

3.1.1. Terrestrial	and	oceanic	carbon	budgets	based	on	the	reference	framework 

Inversion	 results	 demonstrate	 that	 terrestrial	 emissions	 clearly	 dominate	 the	 overall	
methane	budget	within	the	study	domain	(Figure	5).	Auxiliary	variables	associated	with	
land	variables	yield,	depending	on	the	regression	model,	an	average	signal	strength	of	7	–	
16	ppb	at	the	stations.	Average	emission	rates	after	optimization	are	4.6	–	6.8	mg	CH4	m-

2	d-1,	which	sums	up	to	an	annual	budget	of	3.2	–	4.7	Tg	CH4	yr-1.	These	results	are	in	good	
agreement	with	previously	published	budgets	of	process-based	models	for	wetlands	(0.4	
–	2.0	Tg	CH4	yr-1)	and	the	lake	model	(2.1	Tg	CH4	yr-1),	which	can	be	combined	to	2.5	–	4.1	
Tg	CH4	yr-1.	This	estimate	may	be	too	high	due	to	a	potential	overlapping	of	wetland	and	
lake	areas	in	the	models,	and	associated	double	accounting	of	emissions	(Thornton	et	al.,	
2016).	At	the	same	time,	the	budgets	produced	within	the	context	of	this	study	may	be	
biased	by	the	missing	restriction	of	wetland	area	in	our	Simple	Wetland	Model	and	Zero	
Curtain	Model.	 Although	 not	 the	 focus	 of	 this	 study,	 it	 is	 interesting	 to	 note	 that	 the	
majority	of	the	terrestrial	emission	budget	is	attributed	to	the	‘simple’	variables	such	as	
ZCM.	This	may	imply	that	the	rather	complex	process-based	wetland	and	lake	methane	
emission	 models	 do	 not	 capture	 the	 full	 spatial	 extent	 of	 emissions	 and	 potentially	
underestimate	cold	season	emissions. 

 
Figure	5:	Annual	CH4	budgets	assigned	by	well-scoring	regression	models	to	ESAS	and	land	regions	
(Oct	2014	–	Sep	2015).	Different	colors	reflect	the	range	of	sensitivity	studies	performed	to	test	e.g.	
the	influence	of	background	concentration	fields,	simulation	times	for	backtrajectories,	or	methane	
mole	fraction	data	filtering. 
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In	 comparison	 to	 terrestrial	 results,	 the	 average	 signal	 strength	 of	 ESAS	 auxiliary	
variables	was	smaller	at	0	–	7.5	ppb,	with	average	emission	rates	after	optimization	of	0.5	
–	 2.0	 mg		
CH4	m-2	d-1.	 This	 imbalance	 implies	 that	 ESAS	 signals	 are	 difficult	 to	 quantify	 at	 the	
existing	coastal	sites	because	of	the	influence	of	the	larger	terrestrial	emissions	on	the	
atmospheric	signals.	Summing	up	these	fluxes	to	annual	numbers,	our	regression	models	
yielded	 ESAS	 emission	 budgets	 of	 0	 –	 1.4	 Tg	 CH4	 yr-1.	We	 conducted	 several	 tests	 to	
analyze	the	sensitivity	of	these	estimates	to	settings	of	the	inversion	framework,	each	of	
which	 revealed	 only	 small	 sensitivity	 of	 the	 ESAS	 budget	 to	 model	 uncertainties.	
Moreover,	simulated	atmospheric	methane	time	series	(Figure	6)	matched	very	well	with	
the	 observations	 across	 the	 three	 observation	 sites.	 In	 summary,	 even	 though	 our	
estimates	 for	 cumulative	 annual	 ESAS	 methane	 emissions	 were	 on	 the	 low	 end	 of	
literature	estimates,	we	are	confident	in	the	quality	of	our	findings.	 

 
Figure	6:	Example	of	modeled	atmospheric	CH4	mole	fractions	at	Tiksi	(left),	Ambarchik	(center)	and	
Barrow	(right)	based	on	posterior	emission	estimates	of	a	single	inversion	scenario	(“Coastal	flux	+	
Sea	ice	growth”,	with	relaxed	atmospheric	data	selection). 

3.1.2. Dominant	auxiliary	data	layers,	and	associated	processes 

The	 best-scoring	 regression	 models	 in	 the	 reference	 simulations	 tend	 to	 feature	 the	
shallowest	ocean	variable	not	modulated	by	sea	ice	cover	(exp-10m),	and,	depending	on	
the	 filter	 applied	 to	 the	 atmospheric	 data,	 the	 sea	 ice	 growth	 variable.	 Terrestrial	
variables	 in	 the	best-scoring	models	 included,	e.g.,	 the	constant	 land	 flux	and	 the	Zero	
Curtain	Model	(ZCM). 

Regarding	 the	 influence	 of	 bathymetry,	 our	 inversion	 results	 indicated	 that	 the	more	
emissions	were	 attributed	 to	 shallow	ESAS	waters,	 the	 better	 the	 respective	 emission	
pattern	was	compatible	with	the	atmospheric	observations,	and	the	more	successful	its	
performance	was	in	model	selection.	This	observation	may	be	explained	by	the	fact	that	
methane	released	from	the	seafloor	is	more	efficiently	trapped	in	deeper	water,	as	the	
shelf	water	is	stably	stratified	most	of	the	year	(Janout	et	al.,	2016)	and	the	pycnocline	
depth	 is	 roughly	 on	 the	 order	 of	 10	m	 in	 the	 ice-free	 season	 (Thornton	 et	 al.,	 2016).	
Furthermore,	more	bubbles	could	dissolve	when	traversing	a	deeper	water	column	(e.g.	
Leifer	and	Patro,	2002).	Other	possible	causes	for	higher	seafloor	emissions	close	to	the	
coast	may	be	a	restriction	of	the	permafrost	layer	to	shallow	waters	(Ruppel,	2015),	or	
fluxes	linked	to	the	degradation	of	recently	deposited	terrestrial	carbon	that	is	primarily	
accumulated	in	the	near-shore	region	via	erosion	and	rivers	(e.g.	Vonk	et	al.,	2012).	 In	
summary,	while	our	results	do	not	provide	direct	 insight	 into	the	processes	below	the	
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water	surface,	they	are	in	close	agreement	with	previous	studies	that	also	found	larger	
emissions	in	shallower	waters. 

Regarding	 the	 influence	 of	 sea	 ice	 variables	 on	 the	 output	 of	 the	 reference	 inversion	
framework,	without	additional	data	filters	the	sea	ice	growth	variable	was	selected	in	70	
–	83%	of	well-scoring	models,	with	an	average	budget	of	0.4	Tg	CH4	yr-1	assigned	to	this	
parameter.	This	makes	it	the	best-scoring	variable	among	all	variables	that	describe	shelf	
emissions.	 Regarding	 temporal	 variability,	 the	 inversions	 attributed	 the	 strongest	
emissions	to	fall,	(October	and	November)	especially	in	2014	(Figure	7).	Average	emission	
rates	estimated	by	 inversions	 for	 fall	were	0.9	–	3.8	mg	CH4	m-2	 d-1,	with	best-scoring	
regression	models	on	the	high	end.	This	by	far	exceeds	the	estimates	 for	the	period	of	
lowest	ice	cover	(August	and	September),	which	are	only	0.8	–	1.6	mg	CH4	m-2	d-1.	This	
finding	suggests	that	mixing	of	the	water	column	due	to	brine	rejection	may	be	a	major	
factor	 driving	 annual	 emissions	 (Damm	et	 al.,	 2015).	 Although	no	wind	 speed-related	
variables	 performed	 well	 in	 our	 regression	 model	 selection,	 we	 do	 not	 rule	 out	 the	
possibility	that	storms	in	the	fall	season	could	also	contribute	to	the	result. 

 
Figure	7:	Monthly	methane	emissions	from	the	three	parts	of	the	ESAS	for	four	implementations	of	
the	inversion	framework.	The	results	shown	here	represent	the	range	of	budget	estimates	and	the	
influence	of	varying	the	regression	model	with	sea	ice	cover. 

The	elevated	role	of	fall	time	emissions	linked	to	sea	ice	growth	was	substantially	reduced	
when	applying	a	special	data	filter	to	the	Ambarchik	time	series	that	aimed	at	removing	
transport	situations	potentially	influenced	by	recirculating	air	masses	between	terrestrial	
and	oceanic	domains.	In	this	case,	the	sea	ice	growth	variable	was	not	contained	in	the	
well	performing	regression	models	(selected	in	only	2%	of	well-scoring	models,	with	a	
budget	of	<0.1	Tg	CH4	yr-1),	and	in	the	corresponding	inversions	emissions	in	fall	were	
reduced	to	the	magnitude	of	summer	emissions.	This	substantial	difference	in	both	model	
selection	 and	assigned	 flux	 rates	 indicates	 that	 the	 attribution	of	 flux	 signals	between	
terrestrial	 and	 oceanic	 domains	 was	 highly	 sensitive	 to	 the	 data	 filter	 applied	 to	

Laptev Sea

East Siberian Sea

Chukchi Sea

Oct 2014
Jan 2015

Apr 2015
Jul 2015

Oct 2015

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

CH
4 

em
iss

io
ns

 [T
g]

Regression model
Coastal flux

Coastal flux
(sea ice cover)

High budget

Low budget

Flux
Posterior

Regression model



 
Deliverable 6.7  

 

Version 1.4 Date: Oct 28, 2021 Page 18 of 30 

atmospheric	observations	from	coastal	sites,	and	accordingly	uncertainties	in	the	findings	
are	considerable.	Without	additional	data	constraints	such	as	e.g.,	isotopic	signatures,	a	
clear	differentiation	of	high	oceanic	emissions	 from	recirculated	 terrestrial	 air	masses	
remains	difficult. 

In	regression	model	selection,	variables	that	did	not	use	sea	 ice	cover	as	a	modulating	
parameter	for	flux	patterns	performed	slightly	worse	than	those	that	use	that	parameter.	
In	 other	 words,	 even	 though	 the	 role	 of	 the	 sea	 ice	 growth	 parameter	 seems	 to	 be	
dependent	 on	 the	 filter	 applied	 to	 the	 atmospheric	 GHG	 mole	 fraction	 data,	 the	
consideration	of	an	open	ocean	fraction	(derived	from	sea	ice	concentration)	generally	
improved	the	explanatory	power	of	other	ocean	parameters	such	as	e.g.,	bathymetry.	In	
inversions,	the	emissions	in	the	period	with	highest	ice-cover	(December	–	May,	0.3	–	1.7	
mg	CH4	m-2	d-1)	rivaled	those	of	the	period	of	lowest	ice	cover	(August	–	September,	0.8–
1.6	mg	CH4	m-2	d-1).	These	findings	could	imply	an	enhanced	role	of	methane	emissions	
through	cracks	in	the	ice	cover,	as	e.g.	observed	previously	from	aircraft	data	(Kort	et	al.,	
2012).	The	 comparatively	high	 and	 sustained	wintertime	emissions,	 despite	 the	much	
smaller	emission	area	of	open	water	areas	(e.g.	leads,	polynias)	during	that	period,	could	
be	explained	by	continuous	mixing	of	the	water	column	due	to	refreezing	and	convective	
cooling,	which	can	result	in	trace	gas	emission	rates	up	to	two	orders	of	magnitude	above	
those	in	open	water	(e.g.	Lowry	et	al.,	2018). 

One	hypothesis	postulated	when	entering	 this	project	was	 that	 there	 is	a	potential	 for	
enhanced	methane	emissions	associated	with	sea	ice	retreat,	since	during	ice	melt,	CH4	
accumulated	under	or	stored	in	ice	can	be	released	to	the	atmosphere	(e.g.	Zhou	et	al.,	
2014).	However,	in	regression	model	selection,	the	variable	describing	sea	ice	retreat	was	
rarely	 selected	 and	 ranked	 low	 among	 the	 well-scoring	 models.	 The	 annual	 budget	
attributed	to	the	pattern	was	less	than	0.1	Tg	CH4	yr-1	in	all	cases.	Consistent	with	this,	
optimized	emission	rates	during	sea	 ice	retreat	(June–July)	were	 lower	(standard	data	
selection:	0.7	–	1.4	mg	CH4	m-2	d-1)	than	those	of	the	period	of	lowest	ice	cover	(standard	
data	 selection:	 0.8	 –	 1.6	 mg	 CH4		
m-2	 d-1).	 Although	 the	 effective	 emission	 area	 is	 smaller,	 which	 may	 point	 to	 slightly	
elevated	 emission	 rates	 compared	 to	 open	 water,	 these	 results	 suggest	 that	 stored	
methane	is	not	vented	in	amounts	significant	for	the	annual	budget	during	ice-breakup	
(see	also	Figure	7).	Instead,	it	points	to	limited	accumulation	below	and	in	sea	ice,	and	
therefore	 indicates	 a	marginal	 role	 of	 the	 sea	 ice	 cover	 to	 act	 as	 an	 effective	 trapping	
mechanism	(see	also	previous	paragraph).	One	aspect	that	could	not	be	considered	by	our	
analysis	in	this	context	is	the	different	characteristics	of	first	year	ice	vs.	second	year	ice.	
The	 latter	 remains	quite	 impermeable	 even	during	periods	of	 temperature	variability,	
while	 the	 former	 quickly	 becomes	 permeable	 during	 warm	 spells.	 At	 the	 same	 time,	
during	the	melting	process	the	formation	of	a	melt	water	layer	that	caps	the	methane-rich	
lower	 ocean	 water	 layers	 can	 form	 an	 effective	 trapping	 mechanism	 that	 restricts	
emissions	(Damm	et	al.,	2015),	which	may	also	contribute	to	keeping	net	emissions	low	
during	that	time. 
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3.2. Results	with	an	extended	database	of	auxiliary	layers 

All	 evaluations	 including	 the	 new	 INTAROS	 data	 layers	 were	 performed	 with	 the	
additional	filter	to	the	atmospheric	dataset	that	aimed	at	excluding	transport	situations	
with	air	masses	re-circulating	between	terrestrial	and	oceanic	domains	at	the	Ambarchik	
site	(see	above).	As	a	consequence	of	this	strict	data	filter,	the	influence	of	a	sea	ice	growth	
control	parameter	was	strongly	reduced,	as	were	the	overall	methane	emission	signals	
attributed	to	the	ESAS	domain	in	fall.	 

Adding	 the	 new	 information	 for	 the	 extended	 version	 of	 the	 GIM	 framework	 (Section	
2.2.2),	we	specifically	checked	the	following	candidate	processes	that	may	be	associated	
with	the	newly	added	auxiliary	data	layers	from	the	INTAROS	database: 

1. Effect	 of	 the	 replacement	 of	 the	 previously	 used	 dataset	 describing	 sea	 ice	
concentration	dynamics	with	the	new	UHH	product. 

2. Use	of	the	inverse	of	sea	ice	thickness	(1/SIT)	as	a	proxy	for	air-ice	exchange	(e.g.	
Loose	et	al.,	2011),	which	may	be	correlated	with	enhanced	methane	emissions	in	
the	marginal	ice	zone	along	the	ice	edge. 

3. Use	of	a	 ‘cooling	product’,	based	on	the	UHH	surface	heat	flux	data	layer,	which	
may	 indicate	 an	 enhanced	 mixing	 of	 the	 surface	 ocean	 layers	 associated	 with	
negative	heat	fluxes,	and	related	emissions	of	methane	into	the	atmosphere. 

4. Use	of	the	UHH	salinity	dataset	for	calculation	of	more	accurate	estimates	of	the	
diffusive	gas	transfer	coefficient	k,	which	previously	was	computed	with	a	constant	
salinity	value. 

5. Inclusion	of	the	total	water	vapor	product	by	UB	as	a	general	proxy	for	surface-
atmosphere	exchange	processes,	and	atmospheric	transport	patterns. 

The	 total	 number	 of	 candidate	 auxiliary	 layers	 was	 reduced	 for	 this	 exercise,	 i.e.	 we	
limited	 the	 selection	 process	 to	 those	 layers	 that	 had	 been	 identified	 as	 the	 most	
important	 in	 the	 reference	modeling	 framework,	 and	 added	 the	 new	 layers	 based	 on	
information	from	the	INTAROS	database.	The	list	of	auxiliary	layers	that	contributed	to	
the	model	selection	is	provided	in	Table	3	below,	which	already	shows	the	ranking	after	
the	optimization	process. 

3.2.1. Terrestrial	and	oceanic	carbon	budgets	with	extended	auxiliary	layers 
As	will	be	shown	in	more	detail	below,	the	addition	of	new	auxiliary	data	layers	led	to	only	
marginal	differences	 in	the	optimization	output.	Even	though	certain	 improvements	to	
explained	variance	in	atmospheric	methane	mole	fractions	were	obtained,	there	was	no	
substantial	shift	in	the	assignment	of	net	flux	budgets	from	terrestrial	or	oceanic	domains.	
The	numbers	provided	in	Section	3.1.1	thus	also	apply	to	the	extended	output	discussed	
here. 

3.2.2. Effect	of	additional	auxiliary	data	layers	from	the	INTAROS	database 

As	mentioned	above,	due	to	the	consideration	of	different	scenarios	in	model	setup,	but	
also	due	to	the	reason	that	there	are	often	only	marginal	differences	in	the	performance	
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of	different	combinations	of	auxiliary	variables	forming	the	top-ranked	models	within	this	
data	 assimilation,	 the	 approach	 applied	 here	 does	 not	 provide	 a	 single	 best	 solution.	
Instead,	we	resorted	to	evaluating	the	data	layer	usage	within	the	family	of	best-scoring	
or	 well-scoring	 models,	 respectively.	 In	 this	 context,	 the	 importance	 of	 an	 auxiliary	
variable	is	primarily	indicated	by	the	number	of	times	it	gets	included	into	models,	and	
the	highest-ranking	model	it	contributes	to.	 

Table	 3	 and	 Figure	 8	 summarize	 the	 statistics	 for	 the	 auxiliary	 data	 layers	 that	were	
selected	for	the	well-scoring	models	of	the	extended	atmospheric	inversion	framework.	
In	total,	15	different	data	layers,	or	derived	products	reflecting	combinations	of	multiple	
data	layers,	were	considered	for	the	models	that	produced	the	best	agreement	between	
simulations	and	observations.	As	for	the	reference	run,	the	parameters	that	determine	the	
terrestrial	methane	emissions	(WSL,	constant	 land,	ZCM)	clearly	stood	out	of	 the	most	
frequently	selected	pieces	of	information,	and	the	combination	of	those	three	actually	also	
formed	the	highest-ranked	model.	This	reflects	the	fact	that	oceanic	methane	emissions	
are	of	significantly	 lower	magnitude	compared	to	the	terrestrial	emissions,	so	that	 the	
performance	 of	 land	 fluxes	 dominates	 the	 cost	 function	 of	 the	 optimization.	 The	 only	
ocean	parameters	that	played	a	considerable	role	in	the	model	formulation,	i.e.	those	that	
were	selected	for	more	than	two	models,	are	simple	bathymetry,	sea	ice	cover,	and	the	
UHH	surface	cooling	flux.	All	other	parameters	play	only	a	marginal	role.	 

Table	3:	Ranking	of	auxiliary	variables	chosen	in	the	well-scoring	models	produced	by	the	extended	
version	 of	 the	 geostatistical	 atmospheric	 inversion	 framework.	 n:	 number	 of	models	 including	 a	
specific	parameter;	rank:	highest-ranking	model	including	the	specific	parameter. 

Order Label Description New 
layer 

n rank 

1 WSL Climatology of CH4 emissions, model LPJ-WSL No 34 1 
2 Const. land Constant land emissions No 30 1 
3 ZCM Zero Curtain Model No 21 1 
4 exp-10m Exponential attenuation with ocean depth  No 6 3 
5 ESAS Ice_mitgcm* Open ocean fraction (1 – Sea Ice Concentration) Yes 6 4 
6 mitgcm_qnetCool* Surface cooling flux (-1*Qnet, positive values) Yes 5 7 
7 ESAS Ice_SSMI* Open ocean fraction (1 – Sea Ice Concentration) No 4 5 
8 k  Gas transfer velocity, constant salinity No 2 10 
9 k coastal* Gas transfer velocity, constant salinity No 2 16 

10 k coastal, ice* Gas transfer velocity, constant salinity No 2 12 
11 k_mitgcm Gas transfer velocity, using salinity data layer Yes 2 17 
12 k coastal_mitgcm* Gas transfer velocity, using salinity data layer Yes 2 15 
13 k coastal_mitgcm, ice* Gas transfer velocity, using salinity data layer Yes 2 13 
14 UB_TWV Total water vapor concentration  Yes 2 11 
15 EI_cool* ERA interim cooling flux No 1 19 

*parameter	additionally	scaled	with	exp-10m	data	layer 

Regarding	 the	 integration	 of	 the	 novel	 data	 layers	 from	 INTAROS	 into	 the	 data	
assimilation	 scheme,	 and	 the	hypotheses	 about	 the	 impact	 on	 the	model	 performance	
listed	above,	the	following	findings	were	obtained: 

1. Replacement	 of	 the	 sea	 ice	 cover	 product,	 from	 formerly	 SSMI	 to	 the	 newly	
generated	 product	 provided	 by	 UHH,	 resulted	 in	 a	 slightly	 better	 model	
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performance	 (see	 also	 Figure	 8,	 exp-10m-ice-mitgcm	 vs.	 exp-10mic-ssmi).	 The	
derived	open	ocean	fraction,	scaled	with	bathymetry,	ranked	5th	in	the	parameter	
list	shown	in	Table	3,	two	positions	above	the	SSMI	product	that	was	used	in	the	
reference	framework.	While	the	new	data	layer	yielded	a	marginal	improvement	
in	 the	 correlation	between	 simulated	 and	observed	 atmospheric	methane	mole	
fractions,	 the	 net	 emissions	 assigned	 to	 the	 ESAS	 domain	 by	 the	 deterministic	
model	were	virtually	identical	between	the	respective	model	versions.	 

2. The	inverse	of	the	UHH	sea	ice	concentration	product	was	not	included	in	a	well-
scoring	 model	 for	 a	 single	 time.	 Accordingly,	 it	 does	 not	 play	 a	 role	 for	 the	
definition	of	spatio-temporal	methane	flux	patterns	that	influence	the	atmospheric	
observations	used	within	this	modeling	study.	This	may	imply	that	either	air-ice-
exchange	 in	 the	 marginal	 ice	 zone	 is	 very	 low	 within	 the	 target	 domain,	 or	
alternatively	the	chosen	product	is	only	a	weak	proxy	it,	or	that	such	processes	are	
not	picked	up	by	the	coastal	observation	sites	used	within	the	context	of	this	study. 

3. The	surface	heat	flux	from	the	UHH	dataset	(rank	6),	converted	to	a	cooling	flux	
product,	was	clearly	superior	to	the	previously	used	cooling	flux	provided	by	ERA	
interim	(rank	15),	shown	also	in	Figure	8	 (cooling-mitgcm-exp-10m	vs.	cooling-
erai-exp-10m).	 The	 additional	 deterministic	 flux	 assigned	 to	 the	 ESAS	 domain,	
linked	to	this	parameter	alone,	sums	up	to	0.2	Tg	CH4	yr-1.	 

4. The	 use	 of	 a	 spatio-temporally	 varying	 salinity	 product	 taken	 from	 the	 UHH	
dataset	to	compute	improved	gas	transfer	velocity	coefficients	k	did	not	make	a	
difference	 for	 the	 inversion.	 In	 fact,	 the	 coefficient	 of	 correlation	 between	 k	
computed	using	a	constant	salinity	or	k	computed	using	the	data	fields	from	UHH	
was	>0.999,	so	differences	are	negligible.	 

5. The	 total	water	 vapor	product	provided	by	UB	 ranked	 similarly	 low	as	 the	 gas	
transfer	velocity	parameters	(see	also	Figure	8),	i.e.	did	not	play	a	substantial	role	
for	the	generation	of	successful	deterministic	models.	The	highest-ranking	model	
including	this	parameter	was	listed	at	position	11,	and	only	two	models	in	total	
made	use	of	this	information.	TWV	basically	competes	with	the	other	low-ranking	
ocean	variables	(its	major	flux	contribution	is	over	the	ocean). 



 
Deliverable 6.7  

 

Version 1.4 Date: Oct 28, 2021 Page 22 of 30 

 
Figure	8:	Fraction	of	top	ranked	regression	models	containing	the	auxiliary	variables	listed	in	Table	
3.	A	fraction	of	1	implies	that	all	models	contained	a	specific	parameter,	while	a	fraction	of	0	implies	
that	none	used	it.	Results	correspond	to	the	inverse	of	parameter	n	given	in	Table	3. 

For	 all	 models	 produced	 by	 the	 reference	 and	 extended	 inversion	 frameworks,	 the	
fraction	of	unexplained	variability	in	the	atmospheric	methane	mole	fraction	time	series	
remained	high	 even	 after	 optimization.	Due	 to	 the	 dominance	 of	 terrestrial	 emissions	
within	 the	 chosen	 study	domain,	 the	 addition	 of	 ocean	parameters	mostly	 led	 to	 only	
marginal	 improvements	 in	 the	 explanatory	power	of	 the	deterministic	models.	This	 is	
owing	to	the	fact	that	the	observational	database	for	Arctic	Ocean	atmospheric	inversion	
studies	 can	 to	 date	 only	 be	 provided	 by	 coastal	 observation	 sites.	 Even	 though	 the	
integrated	 field	of	 view	of	 these	 coastal	networks	 combines	a	 considerable	 fraction	of	
ocean	influence	to	the	observed	dataset,	the	total	influence	of	terrestrial	emissions	is	still	
much	higher,	thus	their	influence	dominates	the	cost	function.	 

4. Summary 
This	report	summarized	a	study	using	a	data	assimilation	scheme	based	on	a	geostatistical	
inverse	 modeling	 framework	 to	 constrain	 methane	 emissions	 over	 the	 East	 Siberian	
Arctic	Shelf,	identify	environmental	conditions	that	explain	spatio-temporal	patterns	in	
surface-atmosphere	emissions,	and	link	the	latter	to	biogeochemical	and	biogeophysical	
processes	 governing	 the	 methane	 cycle	 in	 the	 target	 domain.	 After	 establishing	 a	
reference	 model	 framework	 and	 using	 it	 for	 in-depth	 model	 sensitivity	 studies	 and	
process	 investigation,	 in	 a	 second	 step	we	 added	 new	 data	 layers	 from	 the	 INTAROS	
database,	 and	 tested	 their	 effect	 on	 model	 performance,	 and	 selection	 of	 dominant	
auxiliary	data	layers.	 

Based	on	 the	reference	modeling	 framework,	we	estimated	annual	methane	emissions	
from	the	East	Siberian	Arctic	Shelf	to	the	atmosphere	at	0	–	1.4	Tg	CH4	yr-1,	which	is	on	
the	low	end	of	existing	literature	estimates.	Highest	emissions	were	attributed	to	shallow	
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waters,	 while	 no	 emission	 spike	 was	 observed	 during	 sea	 ice	 retreat,	 indicating	 low	
accumulation	of	methane	under	the	ice	in	winter.	We	also	found	potentially	substantial	
emissions	in	fall	and	sustained	emissions	during	winter,	but	these	findings	were	sensitive	
to	filters	applied	to	atmospheric	observation	data,	thus	we	have	lower	confidence	in	them.	
All	 results	 could	be	explained	by	 two	underlying	processes:	 first,	 trapping	of	methane	
below	the	pycnocline	could	be	responsible	 for	a	dominance	of	emissions	 from	shallow	
waters,	the	potential	emissions	in	fall	(sea-ice	growth,	storms)	and	the	missing	emission	
spike	during	sea	ice	retreat	(melt-water	barrier).	Second,	significant	emissions	through	
cracks	in	sea	ice	could	explain	winter	emission	estimates	and	the	missing	methane	spike	
during	 sea	 ice	 retreat	 (low	 accumulation).	 However,	 even	 though	 we	 interpret	 these	
processes	 as	 the	 most	 likely	 explanation	 of	 our	 findings,	 the	 results	 could	 also	 be	
explained	 by	 other	 factors,	 and	 limitations	 of	 our	 method	 could	 have	 contributed	 to	
several	results. 

Addition	 of	 new	 data	 layers	 from	 the	 INTAROS	 database	 focused	 on	 two	 products,	
provided	 by	 partners	 UHH	 and	 UB,	 which	 fulfilled	 the	 format	 requirements	 for	 data	
assimilation	into	the	chosen	atmospheric	inversion	framework,	i.e.	provision	of	spatially	
continuous,	 gridded	 information.	 In	 addition	 to	 the	 five	 parameters	 that	 could	 be	
extracted	from	these	new	datasets,	several	derived	products	were	developed,	all	of	which	
were	 tested	 as	 potential	 auxiliary	data	 layers	 to	 explain	 spatio-temporal	 variability	 in	
methane	emissions.	Our	results	revealed	that	the	improved	sea	ice	concentration	product	
provided	by	UHH	was	preferred	over	the	previously	used	dataset.	Moreover,	the	surface	
heat	fluxes	from	that	same	dataset	were	clearly	superior	over	the	ERA	interim	cooling	flux	
data	 product	 that	 had	 previously	 been	 used	 in	 the	 inversion.	 Other	 new	 parameters	
played	only	a	marginal	role	(e.g.,	the	total	water	vapor	product	by	UB),	or	were	not	used	
in	model	selection	at	all	(e.g.,	the	sea	ice	thickness	parameter	from	UHH).	Accordingly,	the	
assimilation	of	new	data	improved	model	performance,	while	no	major	effects	on	the	total	
emissions	 in	simulated	flux	 fields	of	methane	was	found.	Since	the	overall	structure	of	
chosen	data	layers	combined	in	the	top-ranking	models	did	not	substantially	change,	and	
successfully	chosen	new	data	layers	mostly	replaced	similar	products	from	other	sources	
that	were	previously	used,	no	new	insights	about	processes	and	controls	governing	the	
shelf	area	methane	cycle	could	be	derived.	 

5. Exploitation	plan 
The	presented	 study	 sheds	new	 light	 on	disagreements	 on	 the	magnitude	of	methane	
emissions	 from	 the	 East	 Siberian	 Arctic	 Shelf	 to	 the	 atmosphere	 in	 the	 literature	 and	
provides	 insights	 into	 the	 controls	 of	 the	 emissions.	 Our	 study	 suggests	 that	 in	 the	
selected	model	domain,	which	is	supposed	to	be	representative	for	the	high	Arctic	coastal	
region,	terrestrial	emissions	from	northern	wetlands	are	at	present	more	important	than	
shelf	emissions	for	the	atmospheric	methane	burden.	Our	inversion	results	placed	shelf	
emissions	 predominantly	 into	 shallow	 water	 areas,	 which	 is	 compatible	 with	 the	
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assumption	 that	 pycnocline	 inhibition	 strongly	 limits	 emissions	 from	 deeper	 areas,	
among	other	factors.	 

Sensitivity	 studies	 revealed	 the	 importance	 for	 future	 studies	 focusing	 on	 improving	
inaccuracies	in	atmospheric	transport	modeling	in	the	Arctic	especially	in	winter,	which	
is	particularly	relevant	for	coastal	sites	that	may	temporarily	be	affected	by	small-scale	
circulation	systems	 that	 complicate	 the	separation	between	 terrestrial	and	oceanic	air	
masses.	In	this	context,	there	is	a	general	need	for	expanding	the	atmospheric	greenhouse	
gas	 observation	 network	 in	 the	 Arctic,	 with	 a	 particular	 demand	 in	 observations	
representing	 the	oceanic	domain.	The	 full	potential	of	 the	presented	data	assimilation	
framework	to	deliver	novel	insights	into	controls	and	mechanisms	governing	large-scale	
greenhouse	gas	exchange	processes	over	the	Arctic	Ocean	can	only	be	reached	through	
installing	new	monitoring	stations,	and	provision	of	additional	parameters	such	as	e.g.,	
stable	 isotope	 signatures	 of	 carbon	 species	 that	 allow	 better	 constraining	 the	 source	
processes.	 

Alleviating	these	constraints,	the	data	assimilation	approach	presented	herein	could	be	
demonstrated	 to	be	 a	powerful	 research	 tool	 for	 exploiting	 additional	 data	 sources	 to	
generate	 new	 information	 on	 carbon	 budgets	 and	 underlying	 processes	 in	 previously	
understudied,	 data-poor	 domains.	 Future	 research	 should	 focus	 on	 assimilating	
additional	datasets	that	e.g.,	take	into	account	the	role	of	transport	with	ocean	currents,	
or	 provide	 novel	 links	 to	 oceanic	 biogeochemistry,	 in	 order	 to	 provide	 a	 more	
comprehensive	 view	 of	 the	 role	 of	 ocean	 shelves	 in	 the	 Arctic	 carbon	 cycle.	
Interdisciplinary	 collaboration	with	 data	 providers	 from	 different	 scientific	 areas,	 but	
also	a	with	statisticians	and	database	managers	who	convert	products	into	the	requested	
formats,	 such	as	organized	within	 the	 INTAROS	project,	 are	a	prerequisite	 to	achieves	
these	goals.	 

6. Contributions	to	the	roadmap	towards	an	integrated	Arctic	
Observing	System	(iAOS) 

Our	 study	 demonstrated	 the	 unique	 potential	 of	 atmospheric	 inverse	modeling	 as	 an	
important	 component	 of	 a	 pan-Arctic	 greenhouse	 gas	 monitoring	 system.	 Using	 the	
atmosphere	as	an	integrator	of	heterogeneous	surface-atmosphere	exchange	processes	
within	 structured	 Arctic	 landscapes,	 inverse	 modeling	 can	 provide	 data-driven	
constraints	 of	 greenhouse	 gas	 budgets	 at	 regional	 to	 pan-Arctic	 scales.	Moreover,	 the	
application	of	geostatistical	inverse	modeling	allows	to	assimilate	multi-disciplinary	data	
layers	 into	 the	 framework,	 test	 their	 explanatory	 power	 towards	 observed	 spatio-
temporal	 patterns	 in	 atmospheric	 greenhouse	 gas	mole	 fractions,	 and	 this	way	derive	
novel	insights	into	effective	control	mechanisms	for	Arctic	greenhouse	gas	processes	at	
larger	scales,	including	both	terrestrial	and	oceanic	domains. 

As	 clearly	 demonstrated	 by	 the	 recent	 6th	 report	 of	working	 group	 1	 of	 the	 IPCC,	 the	
Northern	circumpolar	permafrost	region	is	a	key	player	within	the	global	carbon	budget,	
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and	degradation	of	existing	permafrost	carbon	pools	may	have	catastrophic	impacts	on	
future	global	climate	trajectories.	Next	to	site	level	and	local	scale	observation	tools	such	
as	e.g.	flux	chambers	and	eddy-covariance	flux	monitoring,	atmospheric	inverse	modeling	
needs	to	be	established	as	an	operational,	large-scale	monitoring	tool	capable	of	providing	
pan-Arctic	budgets	of	greenhouse	gas	exchange,	broken	up	into	sub-regional	and	also	sub-
monthly	resolution.	Provided	a	sufficiently	large	database	of	atmospheric	observations	
(see	also	below),	 inverse	modeling	assessments	 therefore	 form	the	best	 tool	currently	
available	for	providing	a	comprehensive	Arctic	greenhouse	gas	budget	at	regular	intervals	
(e.g.	annual).	Operated	over	longer	timeframes,	changes	in	budgets	and	long-term	trends	
may	indicate	altered	feedbacks	between	permafrost	carbon	and	climate	change,	so	the	
tool	may	serve	as	an	early	warning	system	for	upcoming	tipping	points. 

To	maximize	 the	 impact	 of	 inverse	 atmospheric	 modeling	 as	 a	 component	 within	 an	
integrated	 Arctic	 observing	 system,	 the	 following	 investments	 would	 need	 to	 be	
implemented: 

- Improve	network	coverage	of	 towers	 that	continuously	monitor	well-calibrated	 in-
situ	greenhouse	gas	mole	fractions	of	important	greenhouse	gases 

- Improve	the	network	coverage	of	tower	sites	that,	besides	continuously	monitoring	
the	major	greenhouse	gases,	also	capture	air	samples	for	analysis	of	minor	greenhouse	
gases	 and	 isotopic	 information,	which	 can	be	 instrumental	 for	 constraining	 source	
processes	and	regions. 

- Improve	the	coverage	of	satellite	remote	sensing	based	greenhouse	gas	observations	
within	the	Arctic	domain.	Due	to	the	special	Arctic	conditions	affecting	data	quality	
(cloud	cover,	light	availability),	active	sensors	should	particularly	be	promoted	in	this	
context. 

- Provision	 of	 additional	 data	 layers	 from	 multiple	 geoscientific	 disciplines	 that	
describe	the	static	or	dynamic	state	of	Arctic	ecosystems,	and	which	can	be	integrated	
into	data	assimilation	frameworks	as	presented	herein	to	describe	and	explain	spatio-
temporal	variability	in	greenhouse	gas	emission	patterns.	Such	information	would	be	
particularly	valuable	to	enhance	insights	into	the	carbon	cycle	processes	of	the	Arctic	
Ocean	domain,	which	to	date	are	poorly	constrained. 

- Finally,	 more	 resources	 are	 required	 to	 improve	 the	 accuracy	 and	 resolution	 of	
atmospheric	transport	modeling	within	the	polar	region. 

Given	these	upgrades	can	be	provided,	geostatistical	inverse	modeling	can	constitute	one	
of	 the	 central	 elements	 of	 a	 future	 iAOS,	 providing	 policy-relevant	 information	 as	 an	
operational	monitoring	tool,	and	integrating	information	sources	across	disciplines. 
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