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EXECUTIVE SUMMARY 

Based on a coupled ocean-sea ice model and its adjoint model, we evaluate the capacity of the 
existing Arctic Ocean observing system on capturing different aspects of the Arctic Ocean 
changes, using Observing System Simulation Experiments (OSSEs). Subsequently, we produce 
a 10-year ocean-sea ice synthesis by assimilating all available observations into the system.  

The main finds are:  

1) Moorings deployed in the Fram Strait and along the pathway of Atlantic inflow to the 
Arctic Ocean are critical to capture the remote-propagating signals. The existing 
mooring system needs to be enhanced.  

2) Sea ice processes, especially sea ice concentration changes, are the dominant mode 
that is improved by data assimilation. The improvement benefits from the 
spatiotemporal coverage of sea ice concentration observations.  

3) Changes in the temperature and salinity are tiny in the ice-covered region and are 
caused by enhanced air-sea interaction due to sea ice reduction. Although the 
availability of hydrographic profiles increased significantly over the past decades, its 
effects are not apparent in the data assimilation experiments. 

 

 
  



 
Deliverable 6.4  

 

Version 1.3 Date: 04 February 2020  Page 4 of 34 

Table of Contents 
1. Introduction 5 

2. Data Assimilation System and Observations 6 

2.1 Model setup 7 

2.2 The Adjoint Data Assimilation Approach 7 

2.3 Arctic Ocean Observing Systems 8 

3. Observing System Simulation Experiments (OSSEs) 10 

3.1 Simulation of Observations and Uncertainties 11 

3.2 Validation of the Tangent Linear Approximation 12 

3.3 Results 14 

3.3.1 Evaluation of the optimization 14 

3.3.2 Sea ice improvements 14 

3.3.3 Temperature and Salinity Changes 16 

3.3.4 Control Variables 18 

3.3.5 Increasing Profile Observations 22 

3.4 Concluding remarks 23 

4. A 10-year Arctic Ocean-Sea ice Synthesis 23 

4.2 Evaluation of the optimization 24 

4.3 Improvement of the sea ice parameters 25 

4.4 Temperature and Salinity Changes 27 

5. Summary 29 

6. References 30 

 



 
Deliverable 6.4  

 

Version 1.3 Date: 04 February 2020  Page 5 of 34 

1. Introduction 
 

The Arctic Ocean plays a critical role in warming the earth system due to the existence 
of sea ice and the large freshwater storage. Model studies (Köhl & Serra, 2014; Proshutinsky 
& Johnson, 1997) suggested that the storage and the release of freshwater are related to basin-
wide cyclonic/anti-cyclonic ocean circulation anomalies caused by Arctic Oscillation. The 
releasing of freshwater to the Atlantic Ocean modulates deep-water formation and therefore 
changes the Atlantic meridional Circulation (Jungclaus et al., 2005). Over the past two decades, 
observations demonstrate that the Arctic Ocean experiences rapid changes with increased 
freshwater storage (Proshutinsky et al., 2009), increased sea level (Armitage et al., 2016; Rose 
et al., 2019), increased ocean mass (Morison et al., 2007), reduced ice cap (Comiso et al., 2008; 
Kwok & Rothrock, 2009), and enhanced inflow from the Atlantic Ocean (Woodgate et al., 
2012) and the Pacific Ocean (Dmitrenko et al., 2008; Quadfasel et al., 1991). Recent studies 
based on observations and models (Dukhovskoy et al., 2004; Giles et al., 2012; Morison et al., 
2012; Polyakov et al., 2010; Zhang & Steele, 2007) improved our understanding of interactions 
between different aspects of the Arctic Ocean. However, neither models nor observations have 
revealed a complete picture of the Arctic Ocean changes, especially the interactions between 
different aspects of the Arctic system, due to the lack of observations and model deficiencies 
(Jahn et al., 2012; Proshutinsky et al., 2011).  

Understanding the complex processes of the Arctic system is critical for predicting its 
changes in the warming earth and for evaluating its impacts on the other components of the 
earth system. Despite recent improvements in the observing capability of the Arctic Ocean, 
the Arctic Ocean remains one of the least observed areas of the global ocean. This situation is 
mainly caused by the harsh operating conditions and by diplomatic constraints requiring that 
individual observing system components are deployed uncoordinated between nations. 
Attempts are being made now to integrate those different components into one sustainable 
and long-term Pan-Arctic observing system with improved temporal and spatial observing 
coverages, which could better monitor changes across the entire Arctic basin. On the other 
hand, data assimilation techniques have been applied to assimilate available observations into 
state-of-the-art coupled ocean-sea ice models, producing ocean reanalysis for better 
understanding dynamic processes (see Uotila et al., 2019 ). Improvements in different aspects 
of the simulated Arctic marine parameters are found in the reanalysis datasets (e.g., Koldunov 
et al., 2017; Xie et al., 2017). Discrepancies among different reanalysis are assessed, which 
may relate to different models, various data assimilation techniques, and observations 
assimilated. However, most of the Arctic reanalysis products are based on operational forecast 
systems and suffer from imbalance due to adjustment of the initial condition periodically 
(usually 1~7 days).  

A better option for the ocean synthesis could be the adjoint method with a long 
assimilation window (e.g., Koldunov et al., 2017), which produces a synthesis product that is 
dynamically consistent with the model dynamics. Despite the application of data assimilation 
techniques in the Arctic Ocean, it remains unclear the potential effects of existing observing 
systems on improving different aspects of the Arctic Ocean due to the lack of independent 
observations. In this study, we will further apply the adjoint method to assimilate observations 
into a coupled ocean-sea ice model.  

This study has two goals: 

1) Assessing the impacts of Observing System on Monitoring the Arctic Ocean 
Changes using Observing System Simulating Experiments (OSSEs). 
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2) Assimilate all available observations into the model to produce an Arctic Ocean 
synthesis from the year 2007-2016. 

The structure of the remaining report is as follows: In section 2, we introduce the 
coupled ocean-sea ice data assimilation system and the Arctic Ocean observing systems. 
Analysis of OSSEs and the effects of individual observing systems are in section 3. In section 
4, we introduce the 10-year Arctic ocean-sea ice synthesis. And section 5 summarises the results 
in both the OSSEs and the 10-year ocean-sea ice synthesis.  

2. Data Assimilation System and Observations 
The data assimilation system is based on the framework of the Estimating the 

Circulation and Climate of the Ocean consortium (ECCO), specifically the work of Fenty and 
Heimbach (2013), using the MIT ocean general circulation model (Marshall et al., 1997) and 
its adjoint model generated by the Transformation of Algorithms in Fortran (TAF, Giering & 
Kaminski, 1998). Applications of this system to adjoint sensitivity analysis and ocean-sea ice 
reanalysis are reported in Koldunov et al. (2013) and Koldunov et al. (2017). Here, the model 
setup, data assimilation method, and the Arctic Ocean observing systems are described below. 
 

 
Figure 1. Model domain (enclosed by the blue line in a), distribution of hydrographic profiles in the summertime 
(May-October, black dots in a) and wintertime (November-April, black dots in b). The red dots mark locations of the 
moorings deployed in the Davis Strait, the Bering Strait, the Fram Strait, the Barents Sea Opening, and by the 
Nansen and Amundsen Basins Observational System (NABOS), the North Pole Environmental Observatory (NPEO), 
and the Beaufort Gyre Exploration Project (BGEP) project. Panels c and d show the number of observations within 
the Arctic Ocean (white bars) and the rest of the model domain (grey bars) in the summer season (c) and the winter 
season (d), depending on depth.  
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2.1 Model setup 
The model domain of the data assimilation system covers the entire Arctic Ocean 

north of the Bering Strait and the Atlantic Ocean north of ~44°N (blue lines in Figure 1a). It 
uses a curvilinear grid with a horizontal resolution ~16 km. In the vertical, the simulation use 
z-coordinate and has 50 levels, with a resolution ranging from 10 m in the surface to ~456 m 
in the deep ocean. The bathymetry is derived from ETOPO2 datasets (Smith & Sandwell, 
1997).  

At the ocean surface, bulk formulae and atmospheric state from the 6-hourly NCEP 
RE1 (Kalnay et al., 1996), including 2 m air temperature, 2 m specific humidity, precipitation 
rate, 10 m wind vectors, downward longwave radiation, and net shortwave radiation, are used 
to compute the momentum, freshwater, and heat fluxes. At the southern and northern open 
boundaries, the model is forced by the monthly output from an 8-km Atlantic-Arctic 
simulation (Koldunov et al., 2014). At the river mouths, a seasonally varying river runoff is 
applied. A virtual salt flux parameterization is used to mimic the effect of freshwater 
input/output on salinity, and a K-profile parameterization scheme of Large et al. (1994) is 
adopted to parameterize the unresolved mixing processes. A dynamic-thermodynamic sea ice 
model is used to predict sea ice concentration, ice thickness, and ice velocity. The 
thermodynamic component is a variation of zero-layer formation of Semtner (1976), and the 
dynamic component is based on (Hibler III, 1979, 1980) and implemented following the work 
of Zhang and Hibler III (1997). The sea ice submodel is then evolved (Losch et al., 2010) and 
improved for the application of synthesis with the adjoint method (Fenty & Heimbach, 2013). 

In OSSEs, a nature run is required to generate pseudo-observations. In this study, a 4-
km Atlantic-Arctic simulation based on MITgcm is used. Configuration of this 4-km Atlantic-
Arctic simulation is similar to the assimilation model above except that: 1) the nature run has 
a higher horizontal (~4 km) and vertical (100 levels) resolutions; 2) it use ERA-Interim (Dee 
et al., 2011) reanalysis as surfacing forcing; 3) it cover the entire Arctic Ocean north of 
Bering Strait and the Atlantic Ocean north of 33°S.  

2.2 The Adjoint Data Assimilation Approach 
We use an adjoint method to assimilate observations into our coupled ocean-sea ice 

model. This method brings model simulation into consistency with available observations by 
minimizing a cost function through adjusting the control variables (the initial state and 
atmospheric forcing in this study) within a long assimilation window. 

Formally, a quadric form cost function is defined as, 

𝐽𝐽(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎) = ∑ [𝑦𝑦(𝑡𝑡) − 𝐸𝐸(𝑡𝑡)𝑥𝑥(𝑡𝑡)]𝑇𝑇𝑅𝑅(𝑡𝑡)−1[𝑦𝑦(𝑡𝑡) − 𝐸𝐸(𝑡𝑡)𝑥𝑥(𝑡𝑡)]𝑇𝑇
𝑡𝑡=1 + 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 𝑃𝑃(0)−1𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 +

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎������𝑇𝑇𝑄𝑄𝑚𝑚−1𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎������+ ∑ 𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎′𝑇𝑇𝑇𝑇−1
𝑡𝑡=0 𝑄𝑄𝑎𝑎−1𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎′        (1) 

 
where Cini and C(t)atm are the model initial state and atmospheric forcing, respectively, and are 
adjusted to reduce the cost function J. The first term on the right-hand side measures the 
uncertainty-weighted squares of model-data misfit, where y(t) and x(t) are vectors of 
observations and model state at time t, and E(t) is the observation operator which maps the 
model state to the observations. The model x(t) evolves with time by integrating the forward 
model with the first guess initial state, atmospheric forcing, and the corresponding increments 
Cini and C(t)atm. The last three terms are background terms for the initial state, time-averaged 
atmospheric forcing increments, and time-varying component of atmospheric forcing 
increments, giving confidence to the first guess initial state and atmospheric forcing. The 
overbars and primes in the last two terms in the right-hand side of equation (1) represent time-
averaged and time-varying components. Superscript T is a matrix transpose operator. R(t)-1, 
P(0)-1, Qm

-1, and Qa
-1 are the error covariance matrixes for the observations, initial state, time-
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averaged atmospheric forcing increments, and time-varying atmospheric forcing increments. 
In this study, the error covariance matrixes are simplified to be diagonal filled individual 
variable error variance, and no covariance structures are assumed. Therefore, R(t)-1, P(0)-1, 
Qm

-1, and Qa(t)-1 determines the relative contribution of each term to the total cost function. 
The definition of the errors will be introduced in section 3 and section 4. 

To minimize the cost function (equation 1) with a large number of control variables 
(~8.2×109 within a 3-year assimilation window), we use an adjoint model to compute the 
gradients of the cost function with respect to the control vector. Here, we give a brief 
introduction to the adjoint model based Taylor Series and simple linear algebra.  

Assuming that the cost function J is differentiable around C, effects of small control 
vector perturbations (∆C) on the cost function J can be evaluated as equation (2) using Taylor 
expansion, where 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 represents the first-order derivative, and o(∆C) indicates the higher-order 

residual.  

∆𝐽𝐽 = 𝐽𝐽(𝐶𝐶 + ∆𝐶𝐶) − 𝐽𝐽(𝐶𝐶) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
∙ ∆C + o(∆C)        (2) 

 
Note that ∆C is a vector with a dimension of ~8.2×109. Assuming ∆J equals one, with 

the first-order approximation, and taking the reverse of equation (2), we get, 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

∗
∙ 1 = G(∆C)           (3) 

 
The left-hand side term of equation (3) represents an adjoint model integration, which 

computes gradients descent directions and amplitudes 𝐺𝐺(∆𝐶𝐶). Then, a quasi-Newton 
algorithm based on Gilbert and Lemaréchal (2009) is adopted to efficiently reduce the cost 
function using the gradients 𝐺𝐺(∆𝐶𝐶). This process is being iterated until the cost function 
cannot be reduced or the cost function reduction differs by less than 1% in two consecutive 
iterations.  

The adjoint code of MITgcm is generated by the Transformation of Algorithms in 
Fortran (Giering & Kaminski, 1998). Modifications are made on the adjoint code to ensure 
the usefulness of the adjoint model over a long assimilation window. Details of the 
modifications will be introduced in section 3.2. 

2.3 Arctic Ocean Observing Systems 
Despite recent improvements in the Arctic Ocean observing system over the past two 

decades, the Arctic Ocean remains one of the least explored regions of the world ocean due to 
the harsh environmental conditions and political difficulties. The Arctic Ocean observing 
network, which highly depends on satellite systems and in-situ observations, is limited by the 
existence of sea ice. In this study, we mostly evaluate the potential effect of the satellite 
observations, including sea surface temperature, ice concentration, ice thickness, and sea level 
anomaly products, and in-situ profiles from shipboard equipment and moorings on monitoring 
the Arctic Ocean changes. Table 1 lists information on parameters that are observed in the 
pan-Arctic Ocean. SST and along-track sea level anomaly (SLA) are available near-real-time 
and in the ice-free regions. Ice concentration is also near-real-time. These data are commonly 
used in operational ocean forecast. Hydrographic profiles are used by operational ocean 
forecast (e.g., Xie et al., 2017). However, it is very sparse and distributed unevenly in both 
spatial and temporal (Figure 1). Many more profiles are distributed in the Greenland, Iceland, 
and Norwegian (GIN) Seas than in the Arctic Ocean and more data available in the summer 
season than in the winter season. Mapped SLA over ice regions and mooring observations are 



 
Deliverable 6.4  

 

Version 1.3 Date: 04 February 2020  Page 9 of 34 

usually delayed by months to years and are not used in the data assimilation experiment. In 
this study, we perform data assimilation experiments based on all these observations. 
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Table 1. Parameters that observed by the Arctic Ocean observing systems 
 Variables observed  Spacing Sources 

Datasets SST Gridded AVHRR (Casey, 2010) 
Ice concentration Gridded ASI-AMSRE1 and ASI-

SSMI2(Spreen et al., 
2008) 

Ice thickness Gridded CryoSat-SMOS merged 
data (Ricker et al., 
2017) 

Hydrographic profiles 1 Point EN4 (Good et al., 2013) 
and UDASH (Behrendt 
et al., 2018) 

SLA Track C3S 
Monthly SLA Gridded Mapped-data from DTU 

(Rose et al., 2019) 
Moorings2 Point Bering Strait (Woodgate 

et al., 2012), The Fram 
Strait (Schauer et al., 
2008), BGEP 
(Proshutinsky et al., 
2009), NABOS 
(Baumann et al., 2018; 
Dmitrenko et al., 2008)  

3. Observing System Simulation Experiments (OSSEs) 
Observing System Simulation Experiments (OSSEs) are important tools to test the 

potential effects of new or existing observations on operational weather and ocean forecast 
before the instruments are built or deployed (Errico et al., 2013). In a well-observed system, 
one can perform such an experiment based on true observations. Given that the Arctic is 
undersampled, we have to rely on synthetic observations generated through a model 
simulation which also called “nature run”. Using such a nature run as the true state, we create 
pseudo-observations based on existing observing systems and a purposed observing system 
with realistic uncertainties. Then, data assimilation experiments with and without the new 
observations are performed. The potential effects of the new observations on the reanalysis 
and forecast are evaluated by comparing the assimilation results with the nature run.  

In this section, we perform two OSSEs to evaluate the effects of the near-real-time 
Arctic Ocean observing system on the ocean synthesis and additional effects from moorings 
and mapped SLA over the ice cover region. A 4-km Atlantic-Arctic ocean simulation (section 
2.1) is used as the nature run to generate pseudo-observations. Pseudo-observations (Table 2) 
are simulated based on the real observing systems (Table 1 ) and the nature run. Table 2 lists 
observations that are assimilated in the two assimilation experiments. Expt01 assimilates 
near-real-time observations that are widely used in operational ocean forecast. Delayed 
observations from moorings and mapped SLA over sea ice cover regions (Armitage et al., 
2016; Rose et al., 2019) may also provide valuable information. We evaluate their potential 
effects on the ocean synthesis in expt02. 
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Table 2. Observations assimilated in the two OSSEs 
 Expt01 Expt02 Instrument errors 

Datesets Sea surface temperature Sea surface temperature 0.35 °C 
Ice concentration Ice concentration 10% 
Ice thickness Ice thickness 0.2 m 
Hydrographic profiles Hydrographic profiles  Temperature 0.02 

Salinity 0.02 
Daily sea level anomaly Daily sea level anomaly 3 cm 
 Monthly sea level anomaly 3 cm 
 Moorings1 Temperature 0.02 

Salinity 0.02 
1 Locations of moorings are marked by red dots in Figure 1; we assume that the moorings 
observe temperature and salinity profiles from 50m-1000m. 

3.1 Simulation of Observations and Uncertainties  
The pseudo-observations and their uncertainties are important to evaluate their 

potential effects in the OSSEs. Based on the daily output of the nature run and spatiotemporal 
distribution of observations (Table 1 and Table 2), we generate pseudo-observations. We 
assume the observation errors consist of instrument errors and representative errors. 
Instrument errors take a Gaussian distribution with the variances listed in Table 2, and the 
errors are added to individual observation types when generating the pseudo-observations. 
Representative errors denote errors due to unresolved processes in the model. In this study, 
they are computed using the nature run with the method described in Oke and Sakov (2008). 
For SST, ice concentration, ice thickness, and SLA, spatial distributions of representative 
errors are used. Shown in Figure 2 is the representative errors for SST and ice concentration. 
The figure reveals that representative errors are much larger than the instrument error along 
the ice edge regions. Along the East Greenland Current, SST error and ice concentration error 
can be as large as 2.5 °C and 0.2, respectively. For temperature and salinity profiles from EN4 
and moorings, a vertical error profile is used, which is ~0.57 °C  and ~0.28 PSU at the surface 
and reduces to ~0.02 °C and 0.02 PSU in the bottom layer. 

 

 
Figure 2. Spatial distributions of representative error for SST (a) and ice concentration (b). 
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In this study, we take daily increments for 2 m air temperature, 2 m specific humidity, 
precipitation rate, 10 m wind vectors, downward longwave radiation, and net shortwave 
radiation as control variables and adjust them to reduce the cost function J. In the OSSEs and 
the first chunk of the 10-year synthesis, initial temperature and salinity are also adjusted to 
reduce the cost function. A 3-year (2004-2006) assimilation window is used. This 
configuration leads to 8.2×109 elements in the control vector. Uncertainties for increments of 
the time-varying atmospheric forcing (Qa) are computed as the standard deviation of the 
NCEP RE1 data. And for the time-average components (Qm) of 2 m air temperature, 2 m 
specific humidity, precipitation rate, 10 m wind vectors, downward longwave radiation, and 
net shortwave radiation, their uncertainties are set to 1 °C, 0.001 kg/kg, 1.5x10-8 m/s, 2 m/s, 
20 W/m2, 20 W/m2.  

3.2 Validation of the Tangent Linear Approximation 
To ensure the numerical stability of the adjoint model, previous studies (Mahfouf, 

1999; Zhu et al., 2002) have found that some physical terms, such as parameterized vertical 
mixing coefficients, radiation processes, internal sea ice stress tensors, must be disabled in the 
adjoint code. Therefore the following modifications are made in the adjoint model:  

1) excludes the K-profile mixing parameterization scheme;  
2) simplify the sea ice dynamics submodel to a free drift model, and  
3) increase the Laplacian diffusivity of heat and salinity to 500 m2/s, and lateral eddy 
viscosity to 10000 m2/s.  
The first two modifications have been extensively examined when applying the 4D-

var data assimilation method to short-term ocean prediction. Linearizing these highly 
nonlinear terms lead to instability of the adjoint model, rendering the adjoint sensitivity 
useless for the optimization. With these simplifications, the adjoint model can usually provide 
useful gradients for the minimization algorithm within the predictability limit of the nonlinear 
system.  

The third modification intends to extend the assimilation window beyond the 
predictability of the nonlinear system. We increase diffusivity and viscosity coefficients to 
suppress the exponentially growing of adjoint sensitivities related to fast-growing modes 
(.e.g., eddies in an eddy-resolving model) of the nonlinear system (see details in Hoteit et al., 
2005; Köhl & Willebrand, 2002; Sugiura et al., 2015).  

Both the tangent linear approximation and the above modifications introduce errors in 
the gradients of the cost function J with respect to the control variables, which are vital for 
minimizing the cost function. Therefore, it is necessary to test the usefulness of this 
approximate tangent linear approximation (section 2.2) with our model configuration because 
of the strong nonlinearity of sea ice processes. A practical way is comparing the spatial-
temporal error evolution based on several forward model runs, and the modified tangent linear 
model runs with prescribed perturbations on the control variables.  

We use the atmospheric forcing increments from the synthesis work of Koldunov et 
al. (2017) as errors to perturb the forward model and the approximate tangent linear model. 
We perform three forward runs from the year 2004, in which atmospheric forcing variables 
are perturbed. The first forward run F(C(t)atm) is forced with atmospheric forcing. The second 
and third forward runs are performed by adding (𝐹𝐹(𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎 + ∆𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎)) and subtracting 
𝐹𝐹(𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎 − ∆𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎) the realistic perturbations from the referencing atmospheric forcing.  
Then, the differences between the perturbed model runs and the reference model run are 
computed as follows, 
∆𝐹𝐹1 = 𝐹𝐹(𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎 + ∆𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎) − 𝐹𝐹(𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎) = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∙ ∆𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑜𝑜(∆𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎)   (4) 

∆𝐹𝐹2 = 𝐹𝐹(𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎 − ∆𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎) − 𝐹𝐹(𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎) = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
∙ ∆𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑜𝑜(−∆𝐶𝐶(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎)  (5) 
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Based on equations (4) and (5), the first and second derivatives of the nonlinear error 

propagation can be obtained by 1
2

(∆𝐹𝐹1 − ∆𝐹𝐹2) and 1
2

(∆𝐹𝐹1 + ∆𝐹𝐹2). By integrating the tangent 
linear model with the above atmospheric forcing perturbations, we can directly get error 
evolution for all model variables. 
 

 
Figure 3. Linear (a) and nonlinear (b) components sea ice concentration errors averaged over May and June 
computed based on equations (4)-(5). Panel (c) is the sea ice concentration error predicted by the approximate tangent 
linear model in May and June. Panels (d)-(e) are the same as panels (a)-(c), except that they are sea ice concentration 
error averaged over November and December. 

 
Figure 3a-c show the linear component 1

2
(∆𝐹𝐹1 − ∆𝐹𝐹2) (a), the higher-order component 

1
2

(∆𝐹𝐹1 + ∆𝐹𝐹2) (b), and the tangent linear model predicted sea ice concentration changes in the 
summer season. Sea ice changes due to the atmospheric forcing perturbations are significant 
in both the marginal seas and the deep ocean. The linear component (a) accounts for more 
than 80% of the sea ice concentration changes, and the tangent linear model predicts more 
than 90% of the linear component of the changes. In the wintertime (Figure 2d-f), significant 
sea ice changes exist along the ice edge, including the East/West Greenland Current, in the 
Barents Sea, and the Kara Sea. Both the linear component (Figure 2d) and the higher-order 
component (Figure 2e) are important, with the linear component account for more than 60% 
of the total changes. In this case, the tangent linear model (Figure 2f) can only predict ~40% 
of the linear error. In both the two cases, the higher-order sea ice concentration changes exist 
in the ice edge, indicating that the nonlinear dynamics are prominent over these regions. The 
results above show that the linear component dominates the sea ice changes, and the nonlinear 
part mainly takes effects in the ice edge regions. The tangent linear model could capture the 
linear mode of the sea ice changes reasonably well considering the directions. However, the 
tangent linear model underestimates the amplitude of the sea ice changes up to 50% in the 
winter season, which may degrade the usefulness of the adjoint model.  
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3.3 Results 
In this section, we analyze the impacts of assimilating pseudo-observations, sampled 

based on existing Arctic Ocean observing system and ATLARC04km simulations, on the 
model simulations. We assess the performance of optimization in section 3.3.1. Changes of 
the control variables, sea ice parameters, ocean temperature, and salinity will be shown 
below.  

3.3.1 Evaluation of the optimization 
In both expt01 and expt02, 18 iterations are performed, respectively. Figure 4 shows 

the resulting reduction of the total cost function and individual constitutes (black bars) and the 
residual root mean square (RMSE) errors (grey bars) in the two experiments. Overall, the cost 
function is reduced by ~37% (expt01) and ~40% (expt02). In terms of individual constitutes, 
sea ice concentration (SIA), sea surface temperature due to sea ice (SIA-SST), and sea ice 
thickness (SIT) contribute most to reduce the total cost function. SLA error is also 
considerably reduced. In expt02, errors of mooring-observed temperature (Moor-T) and 
salinity (Moor-S) are also significantly reduced. The other constitutes are only slightly 
reduced. After the assimilation, errors of variables that are assimilated in both expt01 and 
expt02 are reduced to a similar level. The reduction of errors in the mooring observations is 
significant in expt02.  
 

 
Figure 4. Reduction (black bars) of the total cost function and individual variables, and the cost function and 
individual component after the last iteration (grey bars). Bars with solid and dashed edges are for expt01 and expt02, 
respectively. 
 

3.3.2 Sea ice improvements 
Shown in Figure 5 are time series of total sea ice concentration and volume over the 

pan-Arctic Ocean in the nature run, control run, and the two assimilation experiments. The 
control run simulates more sea ice than the nature run over the whole period. Figure 5a 
reveals that both the two assimilation experiments successfully bring the sea ice concentration 
into consistency with the nature run. In the summer season, sea ice concentration is 
significantly reduced while its changes are tiny in the winter season. Total sea ice volume, as 
shown in Figure 5b, is also improved in both the two assimilation experiments, and the 
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improvement is significantly over the entire period. Although sea ice thickness observations 
are assimilated in the winter season, we note that sea ice volume in the assimilation 
experiments matches better with the nature run in the summer season than the winter season.  

 

 
Figure 5. Time series of (a) total sea ice concentration and (b) total ice volume over the pan-Arctic Ocean in the 
nature run (obs), control run, expt01, and expt02. 
 

To better illustrate the spatial distribution of sea ice concentration and thickness 
improvements, we show in Figure 6, sea ice concentration and thickness errors in the control 
run and the two assimilation experiments. In the summer season, the control run (Figure 6a) 
overestimates sea ice cover up to 30% in a large area of the Arctic Ocean and underestimates 
sea ice cover ~10% around Franz Josef Land. Both expt01 (Figure 6b) and expt02 (Figure 6c) 
significantly reduce the errors except along the northeastern and northern Greenland coast. In 
the winter season, negative sea ice concentration error (-30%) in the control run exists in the 
sea ice edge regions, including the Barents Sea and along the East Greenland Current. The 
two assimilation experiments (Figure 6e and f) slightly reduce the errors by ~15%. But 
significant sea ice errors remain in these regions. The reason for the remaining errors may be 
related to the reduced performance of the adjoint model in the winter season (Figure 3d-f) 
along the sea ice edge. Sea ice thickness error (Figure 6g) is also remarkably reduced in 
expt01 (Figure 6h) and expt02 (Figure 6i), especially in the deep-sea region. Remaining sea 
ice thickness errors mainly located in the shallow water regions, including the Kara Sea, the 
Laptev Sea, the East Siberian Sea, and along the East Greenland Sea Current. 
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Figure 6. Sea ice concentration difference between the control run and the nature run (a), between expt01 and the 
nature run (b), and between expt02 and the nature run (c) in the summer season. (d)-(f) are the same as (a)-(b) but in 
the winter season. (g)-(i) are for sea ice thickness error over the entire assimilation period. 

3.3.3 Temperature and Salinity Changes 
Temperature and salinity observations in the Arctic Ocean rely on shipboard 

equipment and are much less than the rest of the world Ocean. Changes in sea ice can also 
change the temperature and salinity of the Ocean by modifying the air-sea interaction and 
releasing freshwater to the ocean (G. et al., 1998; Giles et al., 2012; Polyakov et al., 2010). 
Changes in temperature and salinity are much smaller than the sea ice components. In this 
section, we assess the improvement of assimilating pseudo-observations from existing 
observing systems on salinity and temperature. 

In the top layer (<50m), the temperature in the control run (Figure 7a) is warmer than 
the nature run in the Arctic Ocean and the GIN seas but is colder in the Labrador Sea. 
Temperature increments in expt01 (Figure 7b) reveal that temperature errors in the GIN seas, 
the Barents Sea, the Labrador Sea, and near the Bering Strait are reduced. However, the 
positive temperature error in the Arctic Basin is slightly increased. In expt02 (Figure 7c), 
further reduction of temperature error in the GIN seas, especially along the Norwegian 
Atlantic Current and the East Greenland Current, is significant. The improvement is likely 
related to assimilating the moorings deployed in the Fram Strait. Over the ice-cover regions, 
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the temperature is slightly degraded, which is probably caused by enhanced air-sea interaction 
related to the reduction of the sea ice cap. 

In the middle layer (50-500m), the temperature error pattern (Figure 7d) is similar to 
that in the upper layer (Figure 7a) except that temperature in the control run shows a negative 
bias on the pathway of the Atlantic inflow north of Franz Josef Island. In expt01, reductions 
of temperature errors in the GIN seas, the Barents Sea, and the Labrador Sea are still visible. 
Slight improvement along the East Siberian Sea continental slope is also noticeable. 
However, north of Svalbard, positive temperature error is increased in expt01. Figure 7f 
shows the temperature difference between expt01 and expt02. Further improvements are 
located along the Norwegian Atlantic Current, the East Greenland Current, the pathway of the 
Atlantic inflow through the Fram Strait, which is likely caused by assimilating the Fram Strait 
mooring observations. In the Makarov Basin and the Beaufort Sea, small temperature error 
reductions are also visible. 
 

 
Figure 7. The seawater temperature difference between the control run and the nature average over the upper 50m 
(a) and 50-500m (d). Panels (b) and (e) are the temperature increments in exp01. (c)-(f) are the temperature difference 
between expt02 and expt01. 

 
The reduction of seawater salinity is limited in the upper layer (Figure 8). Seawater in 

the top layer is much saltier in the control run than that in the nature run over the entire Arctic 
Ocean (Figure 8a). Salinity error reduction in expt01 (Figure 8b) is located in the Greenland 
and Iceland Seas, large areas of the Arctic Ocean. The reduction of salinity is likely related to 
the decrease of sea ice, which releases freshwater into the ocean and is transported via 
circulation. Figure 8c reveals that expt02 further reduces salinity errors near mooring 
locations in the Beaufort Sea and along the pathway of Atlantic inflow while degradations are 
found in central Nansen Basin, north Canadian Basin, and East Siberian Basin. The 
improvements are likely to result from the addition of mooring observations. To reduce the 
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mooring cost component, freshwater from the sea ice melting is transport to the mooring 
locations by adjusting control variables. 
 

 
Figure 8. Seawater salinity difference between the control run and the nature average over the upper 50m (a). (b) and 
(c) are the salinity difference between expt01 and the control run and between expt02 and expt01. 

3.3.4 Control Variables 
As introduced in section 2.2, control variables are adjusted to bring the model 

simulation close to available observations. Increments of the control variables contain 
important information on how they are adjusted to reduce the model-data difference, 
revealing the relative importance of different atmospheric forcing on changing ocean-sea ice 
state. Based on the results of expt02, we add increments of wind vectors, 2 m air temperature, 
and initial temperature and salinity one by one to the atmospheric forcing and evaluate the 
contribution of the individual component on the cost function reduction. Subsequently, we 
analyze the increments of the control variables in expt01 and expt02, explaining how they are 
adjusted to change the ocean-sea ice state. 

Listed in Table 3 is the reduction of the cost function and each constitutes, and 
contributions from increments of wind vectors, 2 m air temperature, initial temperature and 
salinity, and the other control variables. The optimization reduces all the components of the 
cost function except for monthly SLA fields. However, it only accounts for ~1.5% of the total 
cost function.  

Of all the control variables, adjustment of wind, and initial condition dominate the 
total cost reduction. 2 m air temperature also considerably reduce the cost function, especially 
sea ice thickness errors. The other control variables, including 2 m specific humidity, 
precipitation rate, downward longwave radiation, and net shortwave radiation only contribute 
~3.9% of the total cost function reduction and are not sensitive to cost functions.  

Increments of wind vectors dominate the reduction of individual cost function 
components, except for sea ice thickness, sea ice SST, and mooring observations. Sea ice 
thickness improvement is governed by both 2 m air temperature (34.6%) and the initial 
conditions (32.8%). Improvements in SIC(SST) and mooring observations are attributed to 
wind and the initial condition increments, with the initial state dominating. Sea ice 
concentration, which contributes most to the total cost, is improved by adjustment of wind 
(53.8%), 2 m air temperature (22.6%s), and initial temperature and salinity(21.9%). 
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Table 3. Reduction of the total cost function and each component (second column) and 
contributions from increments of wind (third column), 2m air temperature (fourth 
column), initial salinity and temperature (fifth column), and the other control variables 
(the last column) in expt02. 

 Cost function 
reduction 
(%) 

Contribution of the control variables to the cost 
function reduction (%) 
wind 2m Air 

temperature  
Initial 
condition 

Others  

Total 36.7 45.0 13.0 38.2 3.9 
SLA 22.5 75.4 -4.5 24.3 4.8 
SST 29.5 54.2 18.0  24.1 3.8 

EN4(T) 9.9 59.3 11.3 25.8 3.6 
EN4(S) 7.6 46.0 4.0 45.7 4.4 

ICE(Con) 49.1 53.8 22.6 21.9 1.7 
ICE(SST) 47.1 50.4 -3.3 56.5 -3.6 

ICE(THK) 64.4 18.3 34.6 32.8 14.3 
SSHm -37.4 -18.6 -8.8 1.3 -1 

Mooring(T) 50.1 28.8 -4.0 72.8 2.5 
Mooring(S) 34.1 42.2 2.2 50.9 4.8 

 
Shown in Figure 9 are the initial temperature increment in expt01 and expt02-expt01 

in the top 50m (a,b) and 50-500m (c,d). In the top 50 m, a significant positive temperature 
increment occurs over the ice-cover regions (Figure 9a) despite the positive temperature bias 
(Figure 7a) in the pan-Arctic Ocean. Comparing the patterns of initial temperature adjustment 
with sea ice concentration and thickness errors in Figure 6, we see that the change in the 
initial temperature contributes to reducing the sea ice concentration and thickness errors. 
Initial temperature adjustment below 50 m (Figure 7b) is small and is located along the 
continental slope of the East Siberian Sea, the Barents Sea, and ice edge regions. Comparing 
further adjustment of initial temperature (Figure 9b and d) with temperature changes (Figure 
7c and f), we identify that temperature along the pathway of the Barents Sea branch of 
Atlantic inflow is increased, which reduces the negative bias of Atlantic inflow north of Franz 
Josef land. This long-lasting signal is likely captured by moorings deployed in the continental 
slope of the Laptev Sea because warm water that enters into the Barents Sea submerges 
beneath the cold water and isolated to the atmosphere.  

Significant signals also exist in other regions of the Arctic Ocean. However, these 
additional signal is likely damped out quickly and are invisible in the temperature changes in 
Figure 7c and f. Overall, adjustment of initial temperature increment is mainly over the ice-
cover region and contribute to ice parameter changes. With additional mooring observations 
in expt02, temperature along the Barents Sea branch of the Atlantic inflow is increased to 
reduce the negative bias of the Arctic Atlantic Current north of Franz Josef Land. 
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Figure 9. Adjustment of initial temperature over the upper 50m and 50-500m in expt01 (a,b), and the difference 
between expt02 and expt01 (c,d). 

 
Similar to the initial temperature adjustments, 2 m air temperature (Figure 10a) also 

shows positive change over the ice cover region and negative adjustment in the Barents Sea. It 
is adjusted to reduce sea ice concentration and thickness errors (Table 3). Additional 
adjustment of 2 m air temperature in expt02 (Figure 10b) is small and locates in the coastal 
regions and near the location of moorings.  

Unlike all the other control variables, corrections to the zonal and meridional wind 
(Figure10c and e) exist in the region with significant ice concentration errors. Additional 
adjustment of wind vectors in expt02 is also substantial (Figure10d and f) in the marginal 
seas, in the Beaufort Sea, and along the pathway of the circulation. Corrections of wind 
vectors intend to reduce sea ice concentration and, at the same time, redistributing the 
freshwater to the mooring locations. 
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Figure 10. Time-averaged 2 m air temperature increment in expt01 (a), and the difference between expt01 and expt02. 
(c)-(d) and (e)-(f) are the same as (a)-(b) but for u wind and v wind components. 
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3.3.5 Increasing Profile Observations 
In this study, hydrographic profiles are sampled based on data over the year 2003-

2006. Since the year 2007, hydrographic profiles are almost doubled (Behrendt et al., 2018) 
with international efforts. To evaluate the potential effect of increasing the number of profiles, 
we resampled the profiles in expt02 with available profiles in the year 2008. Starting from the 
last iteration of expt02, we run the adjoint model based on the new profiles data.  

Shown in Figure 11 is the adjoint sensitivity for initial temperature and u wind in 
expt2 (b,d), and expt2 with new profile data (a,c), which play a significant role in reducing the 
profile constitute of the cost function (Table 3). The figure reveals that an increasing number 
of profiles have little effect on the gradient patterns of initial temperature and u wind. 
Therefore, the data assimilation cannot extract more information from the profile 
observations. The gradient patterns still represent ice concentration error patterns, and the 
optimization will again try to reduce sea ice concentration error in the following iterations. 
Therefore, even in-situ profiles are increased during the period of “The Fourth International 
Polar Year” with international efforts, temperature and salinity observations are still too few 
to well constrain the solution.  

 
Figure 11. Gradients of the cost function with respect to initial temperature (a, b) and u wind averaged the 
assimilation period (c,d). The difference between the left column and the right column is the profiles used in the cost 
function. In the left column, profile observations are sampled based on the 2008 profiles data. And profiles are 
sampled using the year 2004-2006 data. The two runs are based on the last iteration of expt02.  
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3.4 Concluding remarks 
We perform two OSSEs to assess impacts of assimilating near-real-time pan-Arctic 

Ocean observations and together with delayed data from moorings and monthly mapped SLA 
data on monitoring the Arctic Ocean changes. Pseudo-observations and their uncertainties are 
generated according to a 4-km Atlantic-Arctic simulation and the spatiotemporal coverage of 
various observing systems. The observations are then assimilated into a 16-km pan-Arctic 
ocean model using the adjoint method and a 3-year assimilation window. The improved 
simulation is validated against the 4-km Atlantic-Arctic simulation. 

Results show that both ice concentration and ice thickness are significantly improved 
after data assimilation. Most of the sea ice concentration improvement occurs in the summer 
season over the entire Arctic Ocean. In the winter season, sea ice concentration error mainly 
exists near the ice edge regions, and the data assimilation slightly reduces the error, which 
may be related to the weak performance of the adjoint model in these regions. Sea ice 
thickness is significantly improved in the central Arctic Ocean. However, errors remain in the 
marginal seas and around Greenland. Ice volume after data assimilation matches the nature 
run well, especially in the summer season. 

Improvements in the seawater temperature occur in ice-free and near ice edge regions. 
Additional effects of moorings deployed in the Fram Strait and at the continental slope of the 
Laptev Sea are visible. Salinity changes mainly occur in the upper layers over the ice-cover 
regions, which are likely as a result of ice volume reduction. Further improvements near the 
mooring locations are also visible but it is accompanied by degradation in the other areas. 

The adjustment of wind vectors dominates the total improvement, and most of the 
individual constitutes. Corrections of initial condition dominate error reduction of mooring 
observations, especially in the continental slope of the Laptev Sea and the Fram Strait, 
reflecting the long memory of the Atlantic inflow. Moorings deployed in the inflow paths 
provide information about the circulation upstream of preceding years.  

The improvements in sea ice concentration and thickness indicate that sea ice 
processes seem to be the dominant mode in the Arctic Ocean. By assimilating pseudo-
observations from existing observing systems, their errors are significantly reduced, 
especially in the summer season. Remaining errors along ice edge regions may relate to the 
weak performance of the adjoint model.  

4. A 10-year Arctic Ocean-Sea ice Synthesis 
Koldunov et al. (2017) produced a synthesis by assimilating near-real-time 

observations from the year 2000 to 2008 with an assimilation window of 1 year. Over the past 
decade, more observations are available, such as moorings, monthly mapped SLA (Armitage 
et al., 2016; Rose et al., 2019). In this study, we will extend the synthesis from the year 2007 
to 2016 and assimilate all available observations.  

Assimilated observations are shown in Figure 12. A 4-year assimilation window is 
used, and the whole synthesis period is divided into three chunks: 2007-2010, 2010-2013, 
2013-2016. The control vectors include daily atmospheric forcing on the model grid, which is 
linearly interpolated to model time and which includes 2 m air temperature, 2 m specific 
humidity, precipitation rate, 10 m wind vectors, downward longwave radiation, and net 
shortwave radiation. For the year 2007-2010, initial salinity and temperature are also adjusted.  

Uncertainties for the control variables and observations are the same as in Koldunov et 
al. (2017). Sea ice thickness uncertainty is provided by Ricker et al. (2017) and is revised 
based on Xie et al. (2018). Sea ice concentration uncertainties are defined as Fenty and 
Heimbach (2013). 
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Figure 12. Available observations over the period 2007-2017. 
 

4.2 Evaluation of the optimization 
Minimization algorithms based on (Gilbert & Lemaréchal, 2009) is used to reduce the 

cost function iteratively. Thirteen iterations are performed in the year 2007-2010 and ten 
iterations are performed in the other two chunks. At the last iteration of each chunk, further 
reduction of the cost function is tiny. 

Figure 13 shows the percentage cost function reduction of total cost and each 
component in different assimilation chunks. Negative values mean that the model-data 
difference is increased. The total cost function is reduced by ~28.4%. Most of the individual 
components are reduced except for SLA, SST within ice edge regions, and monthly mapped 
SLA over ice cover regions. For sea ice concentration and SST, which are easily changed by 
atmospheric forcing, error reductions in the three chunks seem homogenous. However, error 
reduction of mean dynamic topography and mooring observations increase in the latter years. 
Due to the daily observing frequency and spatial coverage, sea ice concentration dominates 
the cost function (57.8%) and is significantly improved.  
 

 
Figure 13. Percentage reduction of the total cost function and individual constitutes in the three chunks (see legend). 
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4.3 Improvement of the sea ice parameters 
Figure 14 displays normalized root mean square errors (RMSEs) for sea ice 

concentration and sea ice thickness averaged over the entire model domain with and without 
data assimilation. The normalized RMSEs should be ~1 after the optimization. In the control 
run, normalize RMSEs of sea ice concentration (the upper panel) range from 1.2-2.4, with 
more pronounced errors in the summer season. The normalize RMSEs are reduced to ~1.6 in 
the summer season. In the winter season, the regional-averaged normalized RMSEs are 
slightly reduced. Over the whole assimilation period, mean normalized RMSEs of sea ice 
concentration are reduced from 1.6 to 1.2. Normalized RMSEs of ice thickness is also 
reduced, with the mean error reduced from 1.4 to 1.13. Overall, sea ice thickness and sea ice 
concentrations match the observations well. 
 

 
Figure 14. Normalized RMSEs for sea ice concentration (upper panel) and sea ice thickness (bottom panel) in the 
control run and data assimilation. 
 

Figure 15 shows sea ice concentration errors in the summer season (a,b) and the 
winter season (c,d) in the control run and after data assimilation. Ice edges (15% ice 
concentration) from the control run (green dotted line), the data assimilation experiment (blue 
dotted line), and observations (black dotted line) are overlaid. The control run simulates a 
much wider ice edge (15% ice concentration) than the observation in both the summer sea and 
the winter season. After data assimilation, ice edges match the observations well. In the 
summer season (Figure 15), the control run simulates 20%-30% more ice concentration in 
Canadian Archipelago, the Beaufort Sea, the Laptev Sea, the Kara Sea, and the Barents Sea 
and ~20% less ice concentration in the central Arctic Ocean. Sea ice edge extends much 
farther than observations. Most of these errors are reduced after data assimilation, and the ice 
edge also matches the observed ice edge very well. Along the coast, there are considerable 
errors that may result from model deficiency (Fenty & Heimbach, 2013). In the winter season, 
the control simulates a much wider ice edge and more ice concentration along ice edge 
regions (Figure 15d). Although averaged normalized RMSEs are small (Figure 14), we still 
see significant errors over the ice edge regions (Figure 15d) after data assimilation. The errors 
along the ice edge regions are expected since sea ice processes along the ice edge is more 
nonlinear than linear (Figure 3), and the adjoint model cannot capture all ice concentration 
error signals.  
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Figure 15. Sea ice concentration error in the summer season in the control run (a) and after data assimilation (b). (c) 
and (d) are the same as (a) and (b) but in the winter season. Dotted lines in (a) and (c) mark ice edges (15% ice 
concentration) in the control run (green), after data assimilation (blue), and in the observations(black). 
 

Sea ice thickness observations are only available in the winter season. Sea ice 
thickness error in the control run (Figure 16a) shows a similar pattern with sea ice 
concentration error in the summer season (Figure 15a), with less ice north Greenland and 
CAA and more ice in the surrounding areas. After data assimilation (Figure 16b), both 
positive and negative errors are reduced in most of the regions. Positive bias in the Beaufort 
Sea and marginal seas is reduced by -0.1~-0.2 m, and negative bias north of Greenland and 
CAA is reduced by ~0.2-0.4 m. Figure 16d shows ice thickness increments in the first chunk 
(2007-2010). Since SMOS-CS2 ice thickness is only available over the last two months of the 
year 2010 which contributes little to the total cost function, and ice thickness increments 
pattern matches ice concentration improvement pattern (Figure 15a and b), ice thickness 
benefits from assimilating ice concentration data. After data assimilation, the remaining errors 
are considerably large than those in the OSSEs. The significant improvement of sea ice 
thickness is mainly caused by the adjustment of initial condition (32.8%), 2 m air temperature 
(34.6%). However, sea ice thickness observations are available almost four years later than 
the start of data assimilation. And corrections of the initial condition can be small. The 
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remaining errors may also be related to sea ice model deficiency and need to be further 
investigated.  

 
Figure 16. Normalized RMSEs for sea ice concentration (upper panel) and sea ice thickness (bottom panel) in the 
control run and data assimilation. 

4.4 Temperature and Salinity Changes 
Changes in ocean temperature are suspected to influence the ice cover (Polyakov et 

al., 2010). However, in the OSSEs, changes in temperature are mainly as a result of ice 
changes. Here, we will explore temperature and salinity changes in the synthesis and explain 
the increments.  

Figure 17a and c show temperature difference between the control run and WOA18 
over the top 50 m and 50-500 m. Over ice-cover regions, the temperature in the control run is 
slightly lower the climatology. However, the temperature in GIN seas is much warmer than 
the climatology, and the warm water is transported to the Arctic Ocean through the Fram 
Strait and the Barents Sea, resulting in a warm Arctic Atlantic layer. Temperature increments 
in the top layer (Figure 16b) exist in regions where ice concentration is reduced in the summer 
season. The temperature changes are probably caused by enhanced air-sea interaction due to 
reduced ice cover. In the intermediate layer, slightly temperature reduction is visible along the 
pathway of Atlantic inflow through Franz Josef Land. Compared with the results in OSSEs 
(Figure 7d), changes related to the mooring in Fram Strait is not apparent. An explanation for 
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the difference is that the OSSEs assume the moorings observe temperature profiles from 50-
1000m while in reality, the moorings usually observe temperature and salinity at no more than 
three levels. Therefore, mooring observations in the Fram Strait need to be enhanced to 
capture the Atlantic inflow better. 

 

 
Figure 17. Ocean temperature errors and temperature increments after data assimilation over the upper 50 m (a,b) 
and between 50-800 m (c,d). 

 
Similar to the temperature changes, salinity changes (Figure 17b) are small compared 

with the model-data difference (Figure 17a). Changes in salinity are also related to sea ice 
reduction. Although sea ice is reduced in the Barents Sea, the Laptev Sea, and the Beaufort 
Sea, we note that salinity is reduced in the Beaufort Sea but is increased in the Barents Sea 
and the Laptev Sea. The difference may be caused by changes in air-sea interaction with 
reduced ice caps. On the one hand, sea ice reduction releases freshwater to the ocean and 
reduce the salinity. On the other hand, it also increases air-sea interaction and may increase 
evaporation. In our case, both these two processes occur when ice cover is reduced.  
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Figure 18. Ocean salinity errors and temperature increments after data assimilation over the top 50 m (a,b). 

5. Summary  
In this study, we use a coupled ocean-sea ice model and its adjoint to assimilate 

observations into the model. We perform OSSEs to evaluate the capacity of the existing 
Arctic Ocean observing system on monitoring the Arctic Ocean changes. Then, we produced 
a 10-year ocean synthesis (2007-2016) by assimilating all available observations into our 
model. In both OSSEs and the 10-year ocean-sea ice synthesis, we see that sea ice 
concentration contributes most to the total cost function and is improved the most after data 
assimilation. The improvement benefits from the high spatiotemporal coverage of sea ice 
concentration observations. Sea ice thickness is also improved. Based on OSSEs (see Table 
3), we note that sea ice thickness provides additional information to adjust initial conditions 
and 2 m air temperature.  

Changes in temperature and salinity in the OSSEs and the synthesis show different 
patterns. In OSSEs, the temperature in the GIN seas is significantly improved, and the 
additional effect of moorings on the Atlantic inflow is visible. However, in the 10-year 
synthesis, temperature and salinity changes are mainly in the ice reduction regions due to 
enhanced air-sea interaction. Changes in the GIN seas are small. Slightly improvement of 
Atlantic inflow through the Franz Josef Land is visible. There are two possible reasons for the 
degraded performance in the 10-year reanalysis: 1) moorings have less spatiotemporal 
coverage in reality than in OSSEs; 2) fewer iterations are performed in the 10-year synthesis, 
and SST errors are not significantly reduced due to its small contribution to the total cost. 

Overall, the assimilation experiments indicate that the dominant mode that can be 
improved by assimilating all available observations is sea ice processes, especially sea ice 
concentration variability. Improvement in sea ice concentration is govern by corrections to the 
wind vectors. The reduction of sea ice cover after data assimilation enhances air-sea 
interaction and hence changes the temperature and salinity subsequently.  

Due to the long memory of Atlantic inflow into the Arctic Ocean, the potential effects 
of moorings deployed in the Fram Strait and the continental slope of the Laptev Sea are 
noticeable in the OSSEs. However, the mooring system needs to be enhanced since 
temperature and salinity are only observed at a couple of levels in reality. Although the 
numbers of in-situ profiles have increased significantly over the past decades, it is still too 
sparse, and its effects are not apparent in our data assimilation experiments. 
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